
RESEARCH STATEMENT

NICOLAUS HEUER

My research is in Geometric Group Theory. I have broad interests but I am especially
interested in constructing and computing invariants which detect coarse manifestations
of “non-positive curvature” with a particular emphasis on stable commutator length and
bounded cohomology.

1. Stable Commutator Length

Stable commutator length (scl) is an invariant of elements in the commutator subgroup
of a group G; it has intriguing algebraic, geometric and analytic features. If γ is a loop in
a topological space X such that [γ] ∈ π1(X) lies in the commutator subgroup, then the
commutator length of γ is the smallest genus of a surface that bounds γ and similarly its

stable commutator length is the infimum scl([γ]) = infS
χ(S)
2n(S) over “admissible” surfaces S

which map to X such that the boundary of S maps to γ with degree n(S). Algebraically,
commutator (resp. stable commutator) length counts the number of factors needed to
express an element g ∈ [G,G] (resp. its powers) as a product of commutators.

There is an alternative way to compute stable commutator length via quasimorphisms.
A quasimorphism is a map φ : G → R such that there is a constant C > 0 for which
|φ(g) + φ(h) − φ(gh)| ≤ C holds for all g, h ∈ G. The smallest such C is called the
defect of φ and denoted by D(φ). A quasimorphism is homogeneous, if it restricts to
a homomorphism on cyclic subgroups. Bavards Duality Theorem [Bav91] asserts that

scl(g) = supφ
φ(g)
2D(φ) where the supremum is taken over all homogeneous quasimorphisms

φ. For any element g ∈ [G,G] there is an extremal homogeneous quasimorphism φ
which realises this supremum. However, explicit extremal quasimorphisms have been
found only in very few cases. In [Heua] I gave the first explicit construction of infinitely
many extremal quasimorphisms φw on non-abelian free groups. These are derived from
Brooks quasimorphisms by an iterative algebraic reduction algorithm.

Theorem A. [Heua] Let F be a non-abelian free group. For all w ∈ [F, F ] with scl(w) =
1/2 the explicit quasimorphism φw : F → R is extremal.

These quasimorphisms φw are a crucial tool in the proof of Theorem C below.

1.1. Gaps in Stable Commutator length. An algebraic manifestation of the thick-
thin decomposition of hyperbolic manifolds with fundamental group G is a gap in stable
commutator length. There is a constant C > 0 such that for all g ∈ [G,G] either scl(g) ≥
C holds, or scl(g) = 0 for “trivial” reasons. Such a gap exists more generally for many
classes of groups associated to non-positive curvature, such as hyperbolic groups (see
[CF10]), mapping class groups (see [BBF16]), Baumslag–Solitar groups (see [CFL16]),
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Figure 1. Histogram of scl for 30,000 random words g ∈ F′2 of length
24. The x-axis records values of stable commutator length the y-axis the
occurences. The spike at 1 has been truncated. Calculations were done
using scallop; see [Cal].

certain amalgamated free products [CF10], [CFL16] and certain free products [Che18].
For free non-abelian groups F this gap is exactly 1/2; see [DH91], and Figure 1. By the
monotonicity of scl, every element g ∈ [G,G] in a group which is mapped to a non-trivial
element in a free group F also satisfies scl(g) ≥ 1/2. By generalising homomorphisms
G→ F I found a new criterion for gaps of 1/2. By applying this criterion I prove:

Theorem B. [Heua] Let A,B,C be groups, κA : C ↪→ A and κB : C ↪→ B injections and
suppose both κA(C) < A and κB(C) < B are left-relatively convex. If g ∈ A?CB does not
conjugate into one of the factors then there is an explicit homogeneous quasimorphism
φ : A ?C B → R such that φ(g) ≥ 1 and D(φ) = 1. If g is in the commutator subgroup
then scl(g) ≥ 1/2.

Theorem C. [Heua] Every non-trivial element g in the commutator subgroup of a sub-
group of any right-angled Artin group A(Γ) satisfies scl(g) ≥ 1/2. This bound is sharp.

Subgroups of right-angled Artin groups are now known to be an extremely rich class,
following the theory of special cube complexes. See [Wis09], [HW08], [Ago13] and [Bri13].

I could show that the boundary of all such constructed quasimorphisms is the orien-
tation cocycle of an action ρ : G→ Homeo+(S1).

Question 1.1. Is there a more geometric way to construct these quasimorphisms? How
is this construction related to the theory of continued fractions?

1.2. Surface maps. In joint work with Lvzhou Chen [CH], we could generalise Theorem
B to graphs of groups obtain sharp gap results for a large class of groups, like graphs of
groups and certain one-relator and 3-manifold groups.

1.3. Gaps above 1/2. Stable commutator length is rational and computable in free
groups; [Cal09]. This allows one to conduct computer experiments on the distribution of
stable commutator length and a mysterious distribution in the frequency of the values
of stable commutator length emerges; see Figure 1.

Question 1.2. Explain the self-similarity features of Figure 1.
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Question 1.3. Are there more gaps above 1/2?

Experiments suggest that there is no element g ∈ F such that 1/2 < scl(g) < 7/12.
A first step in proving such a second gap would be to characterize those g ∈ F ′ with
scl(g) = 1/2.

Conjecture 1.4. Let g ∈ F ′ be such that scl(g) = 1/2. Either cl(g) = 1 or there exists
t ∈ F with cl(gtgt−1) = 1.

Giles Gardam and I verified the conjecture for all elemenets g ∈ F ′ of length less than
20.

2. Simplicial Volume of manifolds

The simplicial volume ‖M‖ of an orientable closed connected manifold M is a ho-
motopy invariant that captures the complexity of representing fundamental classes by
singular cycles with real coefficients. Simplicial volume is known to be positive in the
presence of enough negative curvature [Gro82b, Thu97] and known to vanish in the pres-
ence of enough amenability [Gro82b, Iva85]. Moreover, it provides a topological lower
bound for the minimal Riemannian volume (suitably normalised) in the case of smooth
manifolds [Gro82b].

Until now, for large dimensions d, very little was known about the precise structure
of the set SV(d) ⊂ R≥0 of simplicial volumes of orientable closed connected d-manifolds.
The set SV(d) is countable and closed under addition. However, the set of simplicial
volumes is fully understood only in dimensions 2 and 3 with SV(2) = N[4] and SV(3) =

N[vol(M)
v | M ], where M ranges over all complete finite-volume hyperbolic 3-manifolds

with toroidal boundary and where v > 0 is a constant.
This reveals that there is a gap of simplicial volume in dimensions 2 and 3: For

d ∈ {2, 3} there is a constant Cd > 0 such that the simplicial volume of an orientable
closed connected d-manifold either vanishes or is at least Cd. It was an open ques-
tion [Sam99, p. 550] whether such a gap exists in higher dimensions. For example, the
previously lowest known simplicial volume of an orientable closed connected 4-manifold
has been 24 [BK08].

In joint work with Clara Löh [HL] we showed that dimensions 2 and 3 are the only
dimensions with such a gap.

Theorem D ([HL, Theorem A]). Let d ≥ 4 be an integer. For every ε > 0 there is
an orientable closed connected d-manifold M such that 0 < ‖M‖ ≤ ε. Hence, the set of
simplicial volumes of orientable closed connected d-manifolds is dense in R≥0.

In dimension 4, we get the following refinement of Theorem D.

Theorem E ([HL, Theorem B]). For every q ∈ Q≥0 there is an orientable closed con-
nected 4-manifold Mq with ‖Mq‖ = q.

3. Constructions in Bounded Cohomology

A guiding theme in Geometric Group Theory is to classify groups by the geometry of
the spaces they act on. In such classification schemes there are typically two extremes:
amenable groups and various notions of “non-positive-” and “negative curvature”; see

3



[Bri06]. The bounded cohomology of a group G picks out negative curvatured features of
G. For example, Hn

b (G,R) is uncountable dimensional if G is acylindrically hyperbolic
and n = 2, 3 but Hn

b (G,R) = 0 for all n ≥ 1 if G is amenable; see [HO13], [FFPS17],
[FPS15]. Bounded cohomology is intimately related to stable commutator length as the
defect of quasimorphisms on G are exactly the exact classes in H2

b(G,R). The study of
bounded cohomology in geometry and group theory was initiated by Gromov in [Gro82a]
in connection to the minimal volume of manifolds. Since then bounded cohomology has
emerged as an indepenedent research field with many applications.

Let V be a normed G-module and let Hn(G,V ) be the ordinary cohomology of G with
coefficients in V . Then the bounded cohomology Hn

b (G,V ) of G with coefficients in V
arises naturally by “quantifying” classes in ordinary cohomology.

The methods available to explicitly compute bounded cohomology are very sparse and
very different from the ones used to compute ordinary group cohomology. There is not
a single finitely generated group G, for which Hn

b (G,R) for all n ≥ 1 is known, unless it
is known to vanish in all degrees; see [Mon06].

In my research I gave several new constructions for bounded cohomology, including
for the free group.

3.1. Cup Product in bounded cohomology. For a non-abelian free group F it is
known that Hn

b (F,R) is trivial if n = 1 and uncountable dimensional in degrees n = 2, 3.
For n ≥ 4, it is unkown if Hn

b (F,R) is trivial. Free groups play a distinguished rôle
in constructing non-trivial classes on other acylindrically hyperbolic groups: Any non-
trivial alternating class in Hn

b (F,R) can be promoted to a non-trivial class in Hn
b (G,R)

where G is an acylindrically hyperbolic group and n ≥ 2; see Corollary 2 of [FPS15].
Many groups of classical interest are known to be acylindrically hyperbolic, such as
non-elementary hyperbolic groups, relatively hyperbolic groups, mapping class groups
of punctured surfaces and Out(Fn) for n ≥ 2.

Just like ordinary cohomology, Hn
b (G,R) has the structure of a graded ring via the

cup product ^ : Hn
b (G,R)×Hm

b (G,R) 7→ Hn+m
b (G,R). In [Heu17] I could show that this

cup product vanishes on all classical classes in H2
b(F,R), where F is a non-abelian free

group.

Theorem F. [Heu17] Let α, β ∈ H2
b(F,R) be bounded classes which are induced by

quasimorphisms of Brooks or Rolli ([Bro81], [Rol09]). Then

α ^ β ∈ H4
b(F,R)

is trivial.

The quasimorphisms of Brooks are dense under pointwise convergence. However, one
cannot deduce from this density that the above cup product always vanishes.

Question 3.1. Is the cup product ^ : H2
b(F,R)×H2

b(F,R)→ H4
b(F,R) trivial?

Note that it is unknown if H4
b(F,R) is trivial.

3.2. Bounded Cohomology and Extensions of Groups. There is a well-known
interpretation of degree 2 and 3 ordinary cohomology in terms of group extensions. A
group extension of a group G by a group N is a group E with a short exact sequence
1→ N → E → G→ 1 of groups. Every such group extension induces a homomorphism
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ψ : G→ Out(N) by conjugation. Let E(G,N,ψ) be the set of all group extensions of G
by N which induce ψ.

It is a well-known result of MacLane [Mac49] that this set is fully determined by the
second and third ordinary group cohomology. In [Heub] I show that there is a analogous
interpretation for bounded cohomology: Let Eb(G,N,ψ) be the set of extensions which
have the additional property that there is a section σ : G → E which is a quasihomo-
morphism in the sense of Fujiwara and Kapovich ([FK16]) where ad ◦ σ : G → Aut(N)
has finite image.

Theorem G. [Heub] Let G and N be groups and suppose that Z = Z(N), the centre
of N , is equipped with a norm ‖ · ‖ such that (Z, ‖ · ‖) has finite balls. Furthermore, let
ψ : G→ Out(N) be a homomorphism with finite image.

There is a class ωb = ωb(G,N,ψ) ∈ H3
b(G,Z) such that ωb = 0 in H3

b(G,Z) if and
only if Eb(G,N,ψ) 6= ∅ and c3(ωb) = 0 ∈ H3(G,Z) and if and only if E(G,N,ψ) 6= ∅.
If Eb(G,N,ψ) 6= ∅, there is a bijection between the sets H2(G,Z) and E(G,N,ψ) which
restricts to a bijection between im(c2) ⊂ H2(G,Z) and Eb(G,N,ψ) ⊂ E(G,N,ψ).

I could moreover classify the classes which arise as such an obstruction ωb ∈ H3
b(G,Z).

4. Quasi-BNS invariants

BNS invariants were introduced by Bieri–Neumann–Strebel in [BNS87] to study the
finiteness properties of normal subgroups containing the commutator subgroup. Let G
be a group with finite generating set S and let Cay(G,S) be the Cayley graph of G with
respect to S. Then define the BNS-invariant Σ1(G) ⊂ Hom(G,R) by setting

Σ1(G) = {φ ∈ Hom(G,R) | Gφ ⊂ Cay(G,S) is connected}

where Gφ = {g ∈ G | φ(g) > 0}. The BNS invariants have been computed and exploited
for many classes of groups. If G is perfect the invariants are empty. On the other hand,
there are many groups of interest for Geometric Group Theory that have a relative
abundance of quasimorphisms. In joint work with Dawid Kielak I develop a theory of
BNS-invariants based on quasimorphisms G→ Z. For many perfect groups the resulting
invariants are non-trivial and a rich theory is beginning to emerge.

5. Computational Complexity Commutator Length

The stable commutator length on non-abelian free groups is computable in polynomial
time; [Cal09]. On the other hand the algorithms known to compute commutator length
run in exponential time; see [Cul81].

In a joint project with Micha l Marcinkowsk we study the computational complexity
of commutator length in free groups. To be precise, we consider the decision problem
with input w ∈ F ′ and n ∈ N which asks if cl(w) ≤ n. As cl(w) ≤ n is verifiable by
an explicit representation of w as the product of n or less commutators, this decision
problem lies in NP .

Conjecture 5.1. The computation of commutator length in free groups is NP-complete.
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