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Abstract

The bounded cohomology Hn
b (G, V ) of a group G with coefficients in

a normed G-module V was first systematically studied by Gromov in

1982 in his seminal paper [Gro82] in connection to the minimal vol-

ume of manifolds. Since then it has sparked much research in Ge-

ometric Group Theory. However, it is notoriously hard to explicitly

compute bounded cohomology, even for the most basic groups: There

is no finitely generated group G for which the full bounded cohomology

(Hn
b (G,R))n∈N with real coefficients is known except where it is known

to vanish in all degrees (see [Mon06]). In this thesis we discuss several

new constructions for classses in bounded cohomology.

There is a well-known interpretation of ordinary group cohomology in

degrees 2 and 3 in terms of group extensions. We establish an analogous

ineterpretation in the context of bounded cohomology. This involves

certain maps between arbitrary groups called quasihomomorphisms,

which were defined and studied by Fujiwara and Kapovich in [FK16].

A key open problem is to compute the full bounded cohomology

(Hn
b (F,R))n∈N of a non-abelian free group F with trivial real coeffi-

cients. It is known that Hn
b (F,R) is trivial for n = 1 and infinite di-

mensional for n = 2, 3, but essentially nothing is known about Hn
b (F,R)

for n ≥ 4. For n = 4, one may construct classes by taking the cup prod-

uct α ^ β ∈ H4
b(F,R) between two 2-classes α, β ∈ H2

b(F,R), but it is

possible that all such cup-products are trivial. We show that all such

cup-products do indeed vanish if α and β are classes induced by the

quasimorphisms of Brooks or Rolli.



In degree 2 there is a well-known connection between bounded coho-

mology and stable commutator length (scl) arising from Bavard’s Du-

ality Theorem. We say that a group G has a gap in scl if there is a

D > 0 such that the stable commutator lenghts of any element g ∈ G′

is either zero or at least D. The maximal possible such gap is 1/2. We

develop a new criterion to tell if a group G has this maximal gap. For

amalgamated free products G = A ?C B we show that every element

g in the commutator subgroup of G which is not conjugate into A or

B satisfies scl(g) ≥ 1/2, provided that C embeds as a left relatively

convex subgroup in both A and B. We deduce from this that every

non-trivial element g in the commutator subgroup of a right-angled

Artin group G satisfies scl(g) ≥ 1/2. This bound is sharp and is in-

herited by the fundamental groups of all special cube complexes. We

prove these statements by constructing explicit extremal homogeneous

quasimorphisms φ̄ : G → R with defect at most 1 satisfying φ̄(g) ≥ 1.

Such quasimorphisms were previously unknown, even for non-abelian

free groups. For these φ̄ there is an action ρ : G→ Homeo+(S1) on the

circle such that [δ1φ̄] = ρ∗euR
b ∈ H2

b(G,R), where euR
b the real bounded

Euler class; see [Ghy87].
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Chapter 1

Introduction

1.1 Overview

The systematic study of bounded cohomology in geometry and group theory was

initiated by Gromov in [Gro82] in connection to the minimal volume of manifolds.

Since then bounded cohomology has emerged as an independent research field

with many applications. These include stable commutator length ([Cal09b]), circle

actions ([BFH16a]) and simplicial volume. Bounded cohomology arises naturally

by “quantifying” classes in ordinary cohomology. It is a functor from groups to

normed chain complexes.

A guiding theme in Geometric Group Theory is to classify groups by the geom-

etry of the spaces they act on. In such classification schemes there are typically two

extremes: amenable groups and various notions of “non-positively curved” groups;

see [Bri06]. Bounded cohomology is concentrated on groups that exhibit features

of negative curvature in a strong way: The bounded cohomology Hn
b (G,R) of an

amenable group G with real coefficients vanishes identically in every degree n ∈ N.

More generally, Hn
b (Φ) : Hn

b (H,R)→ Hn
b (G,R) is an isometric isomorphism for ev-

ery n ∈ N if Φ: G → H is a homomorphism with amenable kernel, by Gromov’s

Mapping Theorem; see [Gro82].

Strikingly, in cases where Hn
b (G,R) is known to be non-trivial, it is typically

infinite dimensional as an R-vector space. For example Hn
b (G,R) is uncountable

if n = 2, 3 and G is an acylindrically hyperbolic group; see [HO13], [Som97] and

[FPS15]. Many “non-positively curved” groups are now known to be acylindrically
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hyperbolic, like non-elementary (relatively) hyperbolic groups, infinite mapping

class groups of surfaces and Out(Fn). Yet for higher degrees the bounded coho-

mology is utterly unknown: There is not a single finitely generated group G for

which the full bounded cohomology (Hn
b (G,R))n∈N with real coefficients is known,

unless it is known to vanish in every degree; see [Mon06].

For a non-abelian free group F it is known that Hn
b (F,R) is trivial if n = 1

and of uncountable dimension in degrees n = 2, 3. For n ≥ 4, Hn
b (F,R) is entirely

unknown. Free groups play a distinguished rôle in constructing non-trivial classes

on other acylindrically hyperbolic groups: Frigerio, Pozzetti and Sisto proved that

any non-trivial alternating class in Hn
b (F,R) can be promoted to a non-trivial class

in Hn
b (G,R) if G is an acylindrically hyperbolic group and n ≥ 2; see Corollary 2

of [FPS15].

The methods available to explicitly compute bounded cohomology are usu-

ally very different from the ones used to compute ordinary group cohomology.

Crucially, bounded cohomology fails to satisfy the Eilenberg–Steenrod axioms, in

particular the axiom of excision. In this thesis, we study and construct several

new classes in bounded cohomology.

There is a well-known interpretation of degree 2 and 3 ordinary cohomology

in terms of group extensions. In Chapter 3 we shall establish an analogous inter-

pretation in bounded cohomology. Just like ordinary cohomology, Hn
b (G,R) has

the structure of a graded ring using the cup product ^ : Hn
b (G,R)×Hm

b (G,R)→
Hn+m
b (G,R). For non-abelian free groups F , we will show that this cup product

vanishes between many well-known classes in H2
b(F,R) in Chapter 4. Hence to

show that H4
b(F,R) is non-trivial, new constructions are needed.

The special case of H2
b(G,R) is often well studied and understood via the cor-

respondence with quasimorphisms. Such maps may also be used to compute and

estimate stable commutator length (scl). We will construct several new quasi-

morphisms on right angled Artin groups (RAAGs) that allow us to show that

non-trivial elements in the commutator subgroup of RAAGs have scl at least 1/2.

This is of particular interest because this bound is inherited by all subgroups of

RAAGs. The spectacular progress of recent years has revealed that this is a very

rich class, following the theory of special cube complexes; see [Wis09], [HW08],

[Ago13], [Bri13] and [Bri17].
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Structure of this thesis

Section 1.2 of this chapter collects the main results of this thesis. In Chapter 2 we

recall well-known results concerning bounded cohomology and stable commutator

length.

In Chapter 3 we will study the connection of group extensions and ordinary

cohomology in the setting of bounded cohomology. In Chapter 4 we will show

that for non-abelian free groups the cup product between many known bounded

2-cocycles vanishes. In Chapter 5 we will construct a new type of quasimorphism

on several groups including right angled Artin groups; these allow us to detect a

gap of 1/2 in the stable commutator length of such groups.

Chapter 6 discusses results in collaborative work and on-going research projects.

1.2 Summary of Results

Chapter 3: Group Extensions and Bounded Cohomology

The material in this chapter is taken from [Heu17b]. For ordinary n-dimensional

group cohomology Hn(G, V ) with coefficients in a normed G-module V there is a

well-known characterisation for n = 2, 3 in terms of group extensions. We develop

an analogous characterisation for bounded cohomology. We first recall the classical

connection between group extensions and ordinary group cohomology.

Definition. An extension of a group G by a group N is a short exact sequence of

groups

1→ N
ι→ E

π→ G→ 1. (1.1)

We say that two group extensions 1 → N
ι1→ E1

π1→ G → 1 and 1 → N
ι2→ E2

π2→
G→ 1 of G by N are equivalent if there is an isomorphism Φ: E1 → E2 such that

the diagram

E1

1 N G 1

E2

π1

Φ

ι1

ι2 π2

3



commutes.

We will see that any group extension of G by N induces a homomorphism

ψ : G→ Out(N). We denote by E(G,N, ψ) the set of group extensions of G by N

which induce ψ under this equivalence.

There is a well-known characterisation of E(G,N, ψ) in terms of ordinary group

cohomology.

Theorem ([Bro82, Theorem 6.6][Mac49]). Let G and N be groups and let ψ : G→
Out(N) be a homomorphism. Furthermore, let Z = Z(N) be the centre of N

equipped with the action of G induced by ψ. Then there is a class

ω = ω(G,N, ψ) ∈ H3(G,Z),

called obstruction, such that ω = 0 in H3(G,Z) if and only if E(G,N, ψ) 6= ∅. If

E(G,N, ψ) 6= ∅ there is a bijection between the sets H2(G,Z) and E(G,N, ψ).

Moreover, for a G-module Z it is possible to characterise H3(G,Z) in terms of

these obstructions:

Theorem ([Bro82, Section IV, 6]). For any G-module Z and any α ∈ H3(G,Z)

there is a group N with Z = Z(N) and a homomorphism ψ : G→ Out(N) extend-

ing the action of G on Z such that α = ω(G,N, ψ).

In other words, any three dimensional class in ordinary cohomology arises as

an obstruction.

We will derive analogous statements to these theorems for bounded cohomol-

ogy. This will use quasihomomorphisms as defined and studied by Fujiwara–

Kapovich in [FK16]. Let G and H be groups. A set-theoretic function σ : G→ H

is called quasihomomorphism if the set

D(σ) = {σ(g)σ(h)σ(gh)−1|g, h ∈ G}

is finite.

Definition. We say that an extension 1 → N
ι→ E

π→ G → 1 of G by N is

bounded, if there is a (set theoretic) section σ : G→ E such that

4



(i) σ : G→ E is a quasihomomorphism and

(ii) the (set-theoretic) map φσ : G → Aut(N) induced by σ has finite image in

Aut(N).

Here φσ : G→ Aut(N) denotes the map φσ : g 7→ φσ(g) with

φσ(g)n = ι−1(σ(g)ι(n)σ(g)−1).

We denote by Eb(G,N, ψ) the set of all bounded extensions of a group G by N

which induce ψ under this equivalence. This is a subset of E(G,N, ψ).

Analogously to the theorem for ordinary cohomology we will characterise the

set Eb(G,N, ψ) ⊂ E(G,N, ψ) using bounded cohomology.

Theorem A. Let G and N be groups and suppose that Z = Z(N), the centre of

N , is equipped with a norm ‖ · ‖ such that (Z, ‖ · ‖) has finite balls. Furthermore,

let ψ : G→ Out(N) be a homomorphism with finite image.

There is a class ωb = ωb(G,N, ψ) ∈ H3
b(G,Z) such that ωb = 0 in H3

b(G,Z)

if and only if Eb(G,N, ψ) 6= ∅ and c3(ωb) = 0 ∈ H3(G,Z) and if and only if

E(G,N, ψ) 6= ∅. If Eb(G,N, ψ) 6= ∅, there is a bijection between the sets H2(G,Z)

and E(G,N, ψ) which restricts to a bijection between im(c2) ⊂ H2(G,Z) and

Eb(G,N, ψ) ⊂ E(G,N, ψ).

Here, cn : Hn
b (G,Z) → Hn(G,Z) denotes the comparision map; see Subsection

2.2. We say that a normed group or module (Z, ‖ · ‖) has finite balls if for every

K > 0 the set {z ∈ Z | ‖z‖ ≤ K} is finite.

Just as in the case of ordinary cohomology we may ask which elements of

H3
b(G,Z) may be realised by obstructions. For a G-module Z we define the fol-

lowing subset of H3
b(G,Z):

F(G,Z) := {Φ∗α ∈ H3
b(G,Z) | Φ: G→M,α ∈ H3(M,Z)}

where Φ: G→M is a homomorphism to a finite group M and where Φ∗α denotes

the pullback of α via the homomorphism Φ. As M is finite, α is necessarily

bounded. Analogously to the classical theorem we will show:

5



Theorem B. Let G be a group, let Z be a normed G-module with finite balls such

that G acts on Z via finitely many automorphisms. Then

{ωb(G,N, ψ) ∈ H3
b(G,Z) | Z = Z(N) and ψ induces the action on G} = F(G,Z)

as subsets of H3
b(G,Z).

Chapter 4: Cup Product between between 2-cycles in the
free group

The material in this chapter is taken from [Heu17a]. In this chapter we exclu-

sively focus on the bounded cohomology of non-abelian free groups F with real

coefficients. As mentioned in the Overview (Section 1.1), Hn
b (F,R) is entirely un-

known for any n ≥ 4 and any non-trivial classes in Hn
b (F,R) may be promoted to

non-trivial classes in Hn
b (G,R) for G any non-elementary acylindrically hyperbolic

group.

It is well-known that non-trivial quasimorhisms φ : G → R induce non-trivial

classes [δ1φ] ∈ H2
b(F,R). There are several explicit constructions for infinite fam-

ilies of linearly independent quasimorphisms φ : F → R. Two prominent such

families are the quasimorphisms defined by Brooks and Rolli; see Examples 2.2.6

and 2.2.7. One may hope to construct non-trivial classes in H4
b(F,R) by tak-

ing the cup product [δ1φ] ^ [δ1ψ] ∈ H4
b(F,R) between two such quasimorphisms

φ, ψ : F → R. We will show that this approach fails.

Theorem C. Let φ, ψ : F → R be two quasimorphisms on a non-abelian free

group F where φ and ψ are either Brooks counting quasimorphisms on a non self-

overlapping word or quasimorphisms in the sense of Rolli. Then

[δ1φ] ^ [δ1ψ] ∈ H4
b(F,R)

is trivial.

Theorem C will follow from a more general vanishing theorem. For this, we will

define two new classes of quasimorphisms on free groups, namely ∆-decomposable

and ∆-continuous quasimorphisms, where ∆ is a certain type of operator, defined

in this chapter, called decomposition. Each Brooks and Rolli quasimorphism will

6



be both ∆-decomposable and ∆-continuous with respect to some decomposition

∆. We will show:

Theorem D. Let ∆ be a decomposition of F and let φ, ψ : F → R be quasimor-

phisms such that φ is ∆-decomposable and ψ is ∆-continuous. Then

[δ1φ] ^ [δ1ψ] ∈ H4
b(F,R)

is trivial.

It was shown by Grigorchuk [Gri95] that Brooks quasimorphisms are dense

in the vector space of quasimorphisms in the topology of pointwise convergence.

However, this topology does not allow one to deduce a general vanishing of the

cup product. We therefore ask:

Question 1.2.1. Let F be a non-abelian free group. Is the cup product

^ : H2
b(F,R)× H2

b(F,R)→ H4
b(F,R)

trivial?

We mention that the cup product on bounded cohomology for other groups

need not be trivial.

Chapter 5: Gaps in scl for RAAGs

The material in this chapter is taken from [Heu19]. For a group G let G′ be

the commutator subgroup. For an element g ∈ G′ the commutator length (cl(g))

denotes the minimal number of commutators needed to express g as their product.

We define the stable commutator length (scl) as scl(g) = limn→∞ cl(gn)/n.

Bavard’s Duality Theorem gives a strong link between stable commutator

length and degree 2 bounded cohomology. We have already seen that certain

classes in H2
b(G,R) are represented by the coboundary of quasimorphisms φ : G→

R. On the other hand, for an element g ∈ G′,

scl(g) = sup
φ̄∈Q(G)

φ̄(g)

2D(φ̄)

7



where Q(G) is the space of homogeneous quasimorphisms and D(φ̄) is the defect

of φ̄. Though it is known that for every element g ∈ G′ the supremum in Bavard’s

Duality Theorem is obtained by so-called extremal quasimorphism, these maps

have previously been known explicitly only in special cases.

A groupG is said to have a gap in stable commutator length if there is a constant

C > 0 such that either scl(g) = 0 or scl(g) ≥ C for every non-trivial g ∈ G′. If G is

non-abelian, such a constant necessarily satisfies C ≤ 1/2. Similarly we may define

gaps in scl for classes of groups. We will see that many classes of “non-positively

curved” groups have a gap in scl. Having a gap in stable commutator length may

be used as an obstruction to group embeddings.

In the first part of this chapter, we will construct an infinite family of extremal

quasimorphisms on non-abelian free groups. Let F2 = 〈a, b〉 be the free group on

generators a and b and let w ∈ F2 be such that it is not conjugate into 〈a〉 or 〈b〉.
Then we will construct a homogeneous quasimorphism φ̄ such that φ̄(w) ≥ 1 and

D(φ̄) ≤ 1. This realises the well-known gap of 1/2 in the case of non-abelian free

groups.

Our approach is as follows: instead of constructing more complicated quasi-

morphisms φ̄ we first “simplify” the element w. This simplification is formalised

by functions Φ: G → A ⊂ F2, called letter-quasimorphisms. Here A denotes

the set of alternating words in F2 = 〈a, b〉 with the generators a and b. These

are words where each letter alternates between {a, a−1} and {b, b−1}. Letter-

quasimorphisms are a special case of quasimorphisms between arbitrary groups

defined by Hartnick–Schweitzer [HS16]. We show:

Theorem E. Let G be a group, g ∈ G and suppose that there is a letter-quasimorphism

Φ: G → A such that Φ(g) is non-trivial and Φ(gn) = Φ(g)n for all n ∈ N. Then

there is an explicit homogeneous quasimorphism φ̄ : G→ R such that φ̄(g) ≥ 1 and

D(φ̄) ≤ 1.

If G is countable then there is an action ρ : G→ Homeo+(S1) such that [δ1φ̄] =

ρ∗euR
b ∈ H2

b(G,R), for euR
b the real bounded Euler class.

By Bavard’s Duality Theorem, it is immediate that if such an element g addi-

tionally lies in G′, the commutator subgroup of G, then scl(g) ≥ 1/2. Many groups

G have the property that for any element g ∈ G′ there is a letter-quasimorphism
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Φg : G → A such that Φg(g
n) = Φg(g)n where Φg(g) ∈ A is non-trivial. We will

see that residually free groups and right-angled Artin groups have this property.

Note the similarities of this property with being residually free.

In the second part of the chapter we apply Theorem E to amalgamated free

products using left-orders. A subgroup H < G is called left-relatively convex if

there is an order on the left cosets G/H which is invariant under left multiplication

by G. We will construct letter-quasimorphisms G→ A ⊂ F2 using the sign of these

orders. We deduce:

Theorem F. Let A,B,C be groups, κA : C ↪→ A and κB : C ↪→ B injections

and suppose both κA(C) < A and κB(C) < B are left-relatively convex. If g ∈
A ?C B does not conjugate into one of the factors then there is a homogeneous

quasimorphism φ̄ : A?CB → R such that φ̄(g) ≥ 1 and D(φ̄) ≤ 1. If G is countable

then there is an action ρ : G → Homeo+(S1) such that [δ1φ̄] = ρ∗euR
b ∈ H2

b(G,R),

for euR
b the real bounded Euler class.

Again by Bavard’s Duality Theorem we deduce that any such g which also lies

in the commutator subgroup satisfies scl(g) ≥ 1/2. We apply this to right-angled

Artin groups using the work of [ADS15]. This way we prove:

Theorem G. Every non-trivial element g ∈ G′ in the commutator subgroup of a

right-angled Artin group G satisfies scl(g) ≥ 1/2. This bound is sharp.

Every subgroup of a right-angled Artin group will inherit this bound. Such

groups are now known to be an extremely rich class, following the theory of spe-

cial cube complexes. See [Wis09], [HW08], [Ago13], [Bri13] and [Bri17]. Stable

commutator length may serve as an invariant to distinguish virtually special from

special cube complexes.
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Chapter 2

Preliminaries

Sections 2.2, 2.3 and 2.4 give a brief and general introduction to bounded coho-

mology, stable commutator length, and simplicial volume, respectively.

2.1 Notations and conventions

Throughout this thesis, Roman capitals (A, B) denote groups, lowercase Roman

letters (a, b) denote group elements, greek letters (α, β) denote functions and curly

capitals (A,B) denote sets. Non-abelian free groups will be denoted by F or by

Fn to emphasise that the group is freely generated by n elements. Free generators

are called letters and denoted in code-font (a, b). In a group G the identity will

be denoted by 1 ∈ G, or by 0 ∈ G to stress that G is abelian. The commutator

subgroup of G will be denoted by G′. The trivial group will also be denoted by “1”.

We stick to these notations unless there is a standard mathematical convention to

do otherwise.

2.2 Bounded Cohomology

Bounded cohomology of discrete groups and topological spaces was first systemat-

ically studied by Gromov [Gro82]. Gromov established the fundamental properties

of bounded cohomology using so-called multicomplexes. Later, Ivanov developed

a more algebraic framework via resolutions [Iva85].

The standard reference that we draw on in this introduction is the recent book

by Frigerio [Fri17].
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We define the bounded cohomology of groups and spaces in Subsections 2.2.1

and Subsection 2.2.2 respectively. The strong relationship between both is dis-

cussed in Subsection 2.2.3. For degree 2 we recall the correspondence to circle

actions (Subsection 2.2.4) and quasimorphisms (Subsection 2.2.5).

2.2.1 Bounded cohomology of groups: Basic Definitions

We define (bounded) cohomology of group using the inhomogeneous resolution.

Let G be a group and let V be a ZG-module. In what follows we may refer to a

ZG-module simply as G-module. Following [Fri17], a norm on a G-module V is a

map ‖ · ‖ : V → R≥0 such that

• ‖v‖ = 0 if and only if v = 0,

• ‖rv‖ ≤ |r|‖v‖ for every r ∈ Z, v ∈ V ,

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ and

• ‖gv‖ = ‖v‖ for every g ∈ G, v ∈ V .

Suppose that the G-module V is equipped with a norm ‖ · ‖. Set C0(G, V ) =

C0
b (G, V ) = V and set for n ≥ 1, Cn(G, V ) = {α : Gn → V }. For an element

α ∈ Cn(G, V ) we define ‖α‖ = sup(g1,...,gn)∈Gn ‖α(g1, . . . , gn)‖ when the supremum

exists and set ‖α‖ =∞, else. For n ≥ 1 define the bounded chains as

Cn
b (G, V ) = {α ∈ Cn(G, V ) | ‖α‖ <∞}.

We define δn : Cn(G, V ) → Cn+1(G, V ), the coboundary operator, as follows: Set
δ0 : C0(G, V ) → C1(G, V ) via δ0(v) : g1 7→ g1 · v − v and for n ≥ 1 define
δn : Cn(G, V )→ Cn+1(G, V ) via

δn(α) : (g1, . . . gn+1) 7→ g1 · α(g2, . . . , gn+1)

+
n∑
i=1

(−1)iα(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1α(g1, . . . , gn).

Note that δn restricts to a map Cn
b (G, V )→ Cn+1

b (G, V ) for any n ≥ 0. By abuse

of notation we denote this restriction by δn as well.
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It is well-known that (C∗(G, V ), δ∗) is a cochain complex. The cohomology of G

with coefficients in V is the homology of this complex and denoted by H∗(G, V ).

Similarly (C∗b (G, V ), δ∗) is a cochain complex and its homology is the bounded

cohomology of G with coefficients in V and denoted by H∗b(G, V ). The inclusion

map Cn
b (G, V ) ↪→ Cn(G, V ) is a chain map and induces the comparison map

cn : Hn
b (G, V ) → Hn(G, V ) on the level of cohomology. Elements in the kernel of

the comparison map are called exact classes.

Let W be a normed H-module and let Φ: G→ H be a homomorphism. Denote

by V the normed abelian group W equipped with G-module structure induced

by Φ. We then obtain a map Hn(Φ) : Hn(H,W ) → Hn(G, V ) via Hn(Φ) : α 7→
Φ∗α where Φ∗α denotes the pullback of α via Φ. Similarly we obtain a map

Hn
b (Φ) : Hn

b (H,W )→ Hn
b (G, V ).

The cup product is a map ^ : Hn(G,R)×Hm(G,R)→ Hn+m(G,R) defined by

setting ([ω1], [ω2]) 7→ [ω1] ^ [ω2] where [ω1] ^ [ω2] ∈ Hn+m(G,R) is represented

by the cocycle ω1 ^ ω2 ∈ Cn+m(G,R) defined by setting

ω1 ^ ω2 : (g1, . . . , gn, gn+1, . . . , gn+m) 7→ ω1(g1, . . . , gn) · ω2(gn+1, . . . , gn+m).

It is easy to check that this map induces a well-defined map

^ : Hn
b (G,R)× Hm

b (G,R)→ Hn+m
b (G,R).

Note that the cup product equips Hn(G,R)n∈N and Hn
b (G,R)n∈N with the structure

of a graded ring.

2.2.2 Bounded cohomology of spaces

To define the (bounded) cohomology of spaces we restrict ourselves to real or

integer coefficients i.e. V = R or V = Z. Let X be a topological space and let

Sn(X) be the set of singular n-simplices in X. Moreover, let Cn(X, V ) be the set

of maps from Sn(X) to V . For an element α ∈ Cn(X, V ) we set

‖α‖∞ := sup
{
|α(σ)|

∣∣ σ ∈ Sn(X)
}
∈ [0,∞]

and let Cn
b (X, V ) ⊂ Cn(X, V ) be the subset of elements that are bounded with

respect to this norm. Let δn : Cn
b (X, V ) → Cn+1

b (X, V ) be the restriction of
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the singular coboundary map to bounded cochains. Then the bounded coho-

mology Hn
b (X, V ) of X with coefficients in V is the cohomology of the com-

plex (C•b (X, V ), δ•) and denoted by Hn
b (X, V ). For α ∈ Hn

b (X, V ) we define

‖α‖ = inf
{
‖β‖∞

∣∣ β ∈ Cn
b (X, V ), δnβ = 0, [β] = α ∈ Hn

b (X, V )}

and observe that ‖ · ‖ is a semi-norm on Hn
b (X, V ). The bounded cohomology of

spaces is also functorial in both spaces and coefficients.

2.2.3 Relationship between bounded cohomology of groups
and spaces

Analogously to ordinary group cohomology, also bounded cohomology of groups

may be computed using classifying spaces.

Theorem 2.2.1 ([Fri17, Theorem 5.5]). Let X be a model of the classifying

space BG of the group G. Then H•b(X,R) is canonically isometrically isomorphic

to H•b(G,R).

Remarkably, this statement holds true much more generally: every topologi-

cal space with the correct fundamental group can be used to compute bounded

cohomology of groups; moreover, bounded cohomology ignores amenable kernels.

Theorem 2.2.2 ([Fri17, Theorem 5.8]). Let X be a path-connected space. Then

H•b(X,R) is canonically isometrically isomorphic to H•b(π1(X),R).

Theorem 2.2.3 (mapping theorem; [Fri17, Corollary 5.11]). Let f : X −→ Y

be a continuous map between path-connected topological spaces. If the induced

homomorphism π1(f) : π1(X) −→ π1(Y ) is surjective and has amenable kernel,

then H•b(f,R) : H•b(Y,R) −→ H•b(X,R) is an isometric isomorphism.

In particular, the bounded cohomology of a group G may be computed as the

bounded cohomology of its representation complex.
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2.2.4 Bounded 2-Cocycles via Actions on the Circle and
Vice Versa

This subsection states a classical correspondence between bounded cohomology

and circle actions developed by Ghys; see [Ghy87]. Also, see [BFH16b] for a

thorough treatment of this topic. Let Homeo+(S1) be the group of orientation

preserving actions on the circle and let

Homeo+
Z (R) = {f ∈ Homeo+(R) | ∀n ∈ Z, x ∈ R : f(x+ n) = f(x) + n}

the subgroup of the orientation preserving homeomorphisms of the real line that

commutes with the integers. By identifying S1 ∼= R/Z we obtain a surjection

π : Homeo+
Z (R)→ Homeo+(S1). The kernel of π is isomorphic to Z via ι : n 7→ fn

with fn : x 7→ x+ n and lies in the center of Homeo+
Z (R). Hence

0 Z Homeo+
Z (R) Homeo+(S1) 1ι π

σ

is a central extension and hence corresponds to a class eu ∈ H2(Homeo+(S1),Z) the

Euler-class. This class is represented by the cocycle ω : (g, h) 7→ σ(g)σ(h)σ(gh)−1 ∈
Z by identifying Z with ker(π) = im(ι) and where σ is any set-theoretic sec-

tion σ : Homeo+(S1) → Homeo+
Z (R). Let σb be the unique section such that

σb(f)(0) ∈ [0, 1). Then ωb(g, h) = σb(g)σb(h)σb(gh)−1 satisfies that for all g, h ∈
G, ωb(g, h) ∈ {0, 1} and hence is ωb is a bounded cocycle. We call the class

eub = [ωb] ∈ H2
b(Homeo+(S1),Z) the bounded Euler class. The image of eub under

the change of coefficients H2
b(Homeo+(S1),Z) → H2

b(Homeo+(S1),R) is called the

real bounded Euler class and denoted by euR
b .

Any action ρ : G→ Homeo+(S1) induces a bounded class via ρ∗eub ∈ H2
b(G,Z)

(resp. ρ∗euR
b ∈ H2

b(G,R)). Ghys ([Ghy87]) showed that two actions ρ1, ρ2 : G →
Homeo+(S1) are semi-conjugate if and only if ρ∗1eub = ρ∗2eub ∈ H2

b(G,Z). See

[BFH16b] for a precise definition of semi-conjugacy. Similarly, we have ρ∗euR
b =

0 ∈ H2
b(G,R) if and only if ρ is semi-conjugate to an action by rotations.

The class ρ∗eub ∈ H2
b(G,Z) may be represented by a cocycle ρ∗ωb ∈ Z2

b (G,Z)

such that for every g, h ∈ G, ρ∗ωb(g, h) ∈ {0, 1}. Surprisingly, a converse statement

holds:
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Theorem 2.2.4. 1 Let G be a discrete countable group and let [ω] ∈ H2
b (G,Z)

be a class represented by a cocycle ω, such that for all g, h ∈ G, ω(g, h) ∈ {0, 1}.
Then there is an action ρ : G→ Homeo+(S1) such that ρ∗eub = [ω] ∈ H2

b(G,Z).

This allows one to show that certain quasimorphisms are induced by a circle

action ρ : G→ Homeo+(S1) without explicitly constructing ρ.

2.2.5 Quasimorphisms

Recall that exact classes ω ∈ H2
b(G,R) are those classes which vanish in ordinary

group cohomology H2(G,R). Hence, there is a map φ : G → R such that δ1φ =

ω. We call such φ a quasimorphism. To be precise, a quasimorphism is a map

α : G → R such that there is a constant D > 0 such that for every g, h ∈ G,

|α(g) − α(gh) + α(h)| ≤ D and hence δ1α ∈ C2
b (G,R). The smallest such D is

called the defect of α and denoted by D(α).

A quasimorphism α : G→ R will be called symmetric if α satisfies in addition

that α(g) = −α(g−1) for all g ∈ G. It is easy to see that each exact 2-class is

represented by a symmetric cocycle.

A quasimorphism φ̄ is said to be homogeneous if φ̄(gn) = nφ̄(g) for all n ∈ Z,

g ∈ G. In particular, φ̄ is symmetric, i.e. φ̄(g−1) = −φ̄(g) for all g ∈ G.

Every quasimorphism φ : G→ R is boundedly close to a unique homogeneous

quasimorphism φ̄ : G→ R defined via

φ̄(g) := lim
n→∞

φ(gn)

n

and we call φ̄ the homogenisation of φ. Homogeneous quasimorphisms on G form

a vector space, denoted by Q(G).

Proposition 2.2.5 ([Cal09b, Lemma 2.58]). Let φ : G → R be a quasimorphism

and let be φ̄ be its homogenisation. Then D(φ̄) ≤ 2D(φ).

We will decorate homogeneous quasimorphisms with a bar-symbol, even if they

are not explicitly induced by a non-homogeneous quasimorphism.

On a non-abelian free group F there are several constructions of non-trivial

quasimorphisms.

1See [Ghy87], see also Theorem 1.3 of [BFH16b]
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Example 2.2.6. In [Bro81], Brooks gave the first example of an infinite family of

linearly independent quasimorphisms on the free group. Let F be a non-abelian

free group on a fixed generating set S. Let w, g ∈ F be two elements which

are represented by reduced words w = y1 · · · yn and g = x1 · · · xm, where xj, yj
are letters of F . We say that w is a sub-word of g if n ≤ m and there is an

s ∈ {0, . . . ,m− n} such that yj = xj+s for all j ∈ {1, . . . , n}. Let w be a reduced

non self-overlapping word, i.e. a word w such that there are no words x and y with x

non-trivial such that w = xyx as a reduced word. For w a non self-overlapping word

we define the function νw : F → Z by setting νw : g 7→ #{w is a subword of g}.
Then the Brooks counting quasimorphism on the word w is the function

φw = νw − νw−1 .

It is easy to see that this defines a symmetric quasimorphism.

Example 2.2.7. In [Rol09], Rolli gave a different example of an infinite fam-

ily of linearly independent quasimorphisms. Suppose F is generated by S =

{x1, . . . , xn}. Let λ1, . . . , λn ∈ `∞alt(Z) be bounded functions λj : Z→ R that satisfy

λj(−n) = −λj(n). Each non-trivial element g ∈ F may be uniquely written as

g = xm1
n1
· · · xmknk where all mj are non-zero and no consecutive nj are the same.

Then we can see that the map φ : F → R defined by setting

φ : g 7→
k∑
j=1

λnj(mj)

is a symmetric quasimorphism called Rolli quasimorphism. We can estimate the

defect by max{3‖λi‖}.

2.2.6 Generalised Quasimorphisms

It is possible to generalise quasimorphisms φ : G→ R to maps Φ: G→ H for G,H

arbitrary groups. Two quite different proposals for such a generalisation come

from Fujiwara–Kapovich ([FK16]) and Hartnick–Schweitzer ([HS16]). Whereas

the former maps are quite restrictive, the latter type of maps are very rich.
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2.2.6.1 Quasihomomorphisms by Fujiwara–Kapovich

Ordinary quasimorphisms φ : G → Z may be characterized by their “bounded

defect”. In [FK16], Fujiwara and Kapovich adopted this notion for general groups:

Definition 2.2.8. 2 Let G and H be groups and let σ : G→ H be a set-theoretic

map. Define d: G×G→ H via d: (g, h) 7→ σ(g)σ(h)σ(gh)−1 and defineD(σ) ⊂ H,

the defect of σ via

D(σ) = {d(g, h)|g, h ∈ G} = {σ(g)σ(h)σ(gh)−1 | g, h ∈ G}.

The group ∆(σ) < H generated by D(σ) is called the defect group. The map

σ : G→ H is called quasihomomorphism if the defect D(σ) ⊂ H is finite.

When there is no danger of ambiguity we will write D = D(σ) and ∆ = ∆(σ).

This definition is slightly different from the original definition in [FK16]. Here, the

authors required that the set

D̄(σ) = {σ(h)−1σ(g)−1σ(gh) | g, h ∈ G}

is finite. However, those two definitions may be seen to be equivalent:

Proposition. Let G,H be groups and let σ : G→ H be a set-theoretic map. Then

σ is a quasihomomorphism in the sense of Definition 2.2.8 if and only if it is a

quasihomomorphism in the sense of Fujiwara–Kapovich ([FK16]) i.e. if and only

if D̄(σ) is finite.

This will be shown in Proposition 3.1.6. Every set theoretic map σ : G → H

with finite image and every homomorphism is a quasihomomorphisms for “trivial”

reasons. We may also construct different quasihomomorphisms using quasimor-

phisms φ : G → Z: Let C < H be an infinite cyclic subgroup and let τ : Z → H

be a homomorphism s.t. τ(Z) = C. Then it is easy to check that for every

quasimorphism φ : G→ Z, τ ◦ φ : G→ H is a quasihomomorphism.

Fujiwara–Kapovich showed that if the target H is a torsion-free hyperbolic

group then the above mentioned maps are the only possible quasihomomorphisms.

To be precise in this case every quasihomomorphism σ : G → H has either finite

image, is a homomorphism, or maps to a cyclic subgroup of H; see Theorem 4.1

of [FK16].

2see [FK16]
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2.2.6.2 Quasimorphisms by Hartnick–Schweitzer

In [HS16], Hartnick and Schweitzer proposed a different generalisation of “quasi-

morphisms”. This approach is more functorial.

Definition 2.2.9 ([HS16]). a map Φ: G → H between arbitrary groups a quasi-

morphism if for every (ordinary) quasimorphism α : H → R, α ◦ Φ: G → R, i.e.

the pullback of α to G via Φ, defines a quasimorphism on G.

Note that a map φ : G → R is a quasimorphism in the sense of Hartnick–

Schweitzer if and only if it is an ordinary quasimorphism. There are many more

quasimorphisms between groups as there are quasihomomorphisms. In chapter 5

we will construct quasimorphisms between free groups.

2.3 Stable Commutator Length and Bavard’s Du-

ality Theorem

Let G be a group. For two elements g, h ∈ G the commutator is defined via

[g, h] = ghg−1h−1 and the group generated by all such commutators is called the

commutator subgroup of G and is denoted by G′. For an element g ∈ G′ we set

cl(g) = min{k | g =
k∏
i=1

[gi, hi]; gi, hi ∈ G}

the commutator length of g. Note that cl is subadditive and hence the limit

scl(g) = lim
n→∞

cl(gn)

n

exists and is called stable commutator length (scl). See [Cal09b] for a comprehen-

sive reference on scl. Calegari showed that in non-abelian free groups scl can be

computed efficiently in polynomial time and is rational. For a group G, the set

of possible values of scl is not fully understood, even for non-abelian free groups.

Stable commutator length has the following geometric meaning. Let X be a topo-

logical space with π1(X) = G and let γ : S1 → X be a loop representing the

conjugacy class of an element [γ] ∈ G′ in the commutator subgroup of G. A map
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φ : Σ → X from a surface Σ to X is called admissible if there is a commutative

diagram

∂Σ Σ

S1 X

ι

∂φ φ

γ

where ι : ∂Σ → Σ is the inclusion map of the boundary of Σ. Define n(Σ, φ)

by setting ∂φ[∂Σ] = n(Σ, φ)[S1] in H1(S1). Further, define χ−(Σ) via χ−(Σ) =

min{χ(Σ), 0}, where χ(Σ) is the Euler characteristic of Σ. Calegari showed that

the stable commutator length of [γ] ∈ G′ is an obstruction to how efficiently γ

may be bounded by surfaces Σ:

Theorem ([Cal09b]). Let X, G and γ be as above. Then

scl([γ]) = inf
(Σ,φ)

−χ−(Σ)

2n(Σ, φ)

where the infimum is taken over all admissible pairs (Σ, φ).

We observe the following basic property:

Proposition 2.3.1. scl is monotone and characteristic. That is, for any group

homomorphism θ : G → H and any g ∈ G we have scl(g) ≥ scl(θ(g)). If θ is an

automorphism, then scl(g) = scl(θ(g)).

There is an intriguing connection between stable commutator length and bounded

cohomology via quasimorphisms.

Theorem 2.3.2 ([Bav91]). Let G be a group and let g ∈ G′. Then

scl(g) = sup
φ̄

|φ̄(g)|
2D(φ̄)

where the supremum is taken over all homogeneous quasimorphisms φ̄ : G→ R.

See [Cal09b] for a proof and a generalisation of this statement. This theorem

allows us to estimate stable commutator length using (homogeneous) quasimor-

phisms. It can be shown that the supremum in Bavard’s Duality Theorem is ob-

tained. That is, for every element g ∈ G′ there is a homogeneous quasimorphism
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φ̄ with D(φ̄) = 1 such that scl(g) = φ̄(g)/2. These quasimorphisms are called

extremal and were studied in [Cal09a]. Extremal quasimorphisms are usually hard

to construct.

Example 2.3.3 (Free Groups). In free groups stable commutator length can be

computed in polynomial time using an algorithm of Calegari [Cal09b]. His algo-

rithm further showed that stable commutator length is rational in free groups and

revealed a surprising distribution of stable commutator length.

This algorithm computes the infimum of the euler characteristic of surfaces

mapping to a space X with free fundamental group. Only in few cases are the

extremal quasimorphisms to elements in non-abelian free groups explicitly known.

Let F = 〈a, b〉 be the group freely generated by the letters a, b and let φw be the

Brooks quasimorphism on the letter w as described in Example 2.2.6. Consider

[a, b], the commutator of the letters a and b. Then it is easy to see that the

quasimorphism η0 = φab − φba satisfies that η0([a, b]) = η̄0([a, b]) = 2, D(η0) = 1

and D(η̄0) = 2. As usual, η̄0 denotes the homogenisation of η0. By Bavard’s

Duality Theorem (2.3.2) we may estimate scl([a, b]) ≥ η̄([a, b])/2D(η̄) = 1/2 and,

as scl([a, b]) ≤ 1/2 (see Section 2.3), we conclude scl([a, b]) = 1/2 and see that η̄0

is extremal.

We will generalise this example to construct quasimorphisms for arbitrary com-

mutators in free non-abelian groups in Chapter 5.

2.3.1 Vanishing of stable commutator length

An element g ∈ G′ may satisfy that scl(g) = 0 for “trivial” reasons, such as if g is

torsion or if g is conjugate to its inverse. There are many classes of groups where

– besides these trivial reasons – stable commutator length vanishes on the whole

group.

By Bavard’s Duality principle this is equaivalent to the injectivity of the com-

parison map c2
G : H2

b (G;R)→ H2(G;R). Examples include:

• amenable groups: This follows from the vanishing of H2
b (G;R) for every

amenable group G by a result of Trauber [Gro82],

• irreducible lattices in semisimple Lie groups of rank at least 2 [BM02], and
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• subgroups of the group PL+(I) of piecewise linear transformations of the

interval [Cal07].

2.3.2 Gaps in stable commutator length

It was shown by [DH91] that every non-trivial element w ∈ F ′ in the commutator

subgroup of a non-abelian free group F satisfies that scl(w) ≥ 1/2 and that equality

scl(w) = 1/2 if w is a commutator.

Using the monotonicity of scl we may conclude that for an arbitrary group G

every commutator [g1, g2] ∈ G′ satisfies scl([g1, g2]) ≤ 1/2. On the other hand,

some elements g ∈ G′ satisfy scl(g) = 0 for trivial reasons, for example if they are

torsion or a positive power of this element is conjugate to a negative power of this

element.

We call the infimum of {scl(g) > 0 | g ∈ G′} the gap of scl, often called the

spectral gap, and say that a group has a gap in scl if this number is positive. Many

classes of “negatively curved” groups have a gap in scl.

• Residually free groups have a gap of exactly 1/2 by Duncan and Howie

[DH91].

• Mapping class groups of closed orientable surfaces, possibly with punctures,

have a gap depending on the surface; see [BBF16].

• Hyperbolic groups have a gap which depends on the hyperbolicity constant

and the number of generators; see [CF10].

• Some classes of groups may not have a uniform gap but the first accumulation

point on conjugacy classes of positive scl may be uniformly bounded away

from zero. For example for non-elementary, torsion free hyperbolic groups

and for the fundamental groups of closed hyperbolic manifolds this accumu-

lation point is at least 1/12; see Theorem B of [CF10] and see Theorem 3.11

of [Cal09b].

• Sometimes, one may control scl on certain generic group elements. If G =

G1 ? G2 is the free product of two torsion free groups G1 and G2 and g ∈ G′

does not conjugate into one of the factors, then scl(g) ≥ 1/2; see [Che18] and
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[IK17]. Similarly, if G = A ?C B and g ∈ G′ does not conjugate into one of

the factors and such that CgC does not contain a copy of any conjugate of

g−1 then scl(g) ≥ 1/12. See Theorem D of [CF10] for the first proof of this

gap and [CFL16] for the sharp gap and a generalisation to graphs of groups.

• Baumslag–Solitar groups have a sharp uniform gap of 1/12; see [CFL16].

Note that this list is not meant to be comprehensive. By monotinicity, having a

gap in scl may serve as an obstruction for group embeddings. If H and G are

non-abelian groups with H ↪→ G and C > 0 is such that every non-trivial element

g ∈ G′ satisfies scl(g) ≥ C then so does every non-trivial element of H ′.

2.4 Simplicial volume and l1-semi norms

An important application of bounded cohomology is to study and computation of

simplicial volume of manifolds.

We recall the l1-semi-norm on real homology and simplicial volume in Subsec-

tion 2.4.1. In Subsection 2.4.2 we recall describe the set of simplicial volumes in

dimensions 2 and 3 and discuss known examples of simplicial volumes in dimen-

sions 4. In Subsection 2.4.3 we state well known properties of simplicial volume.

In Subsection 2.4.4 we discuss the relationship between simplicial volume and

bounded cohomology.

2.4.1 The l1-semi-norm and simplicial volume

Let X be a topological space, let n ∈ N be an integer and let α ∈ H(X,R) be a

class. The l1-semi-norm ‖α‖1 of α is defined as

‖α‖1 = inf
{
|c|1

∣∣ c ∈ Cd(X,R), ∂c = 0, [c] = α
}
,

where Cd(X,R) is the singular chain module of X in degree n with R-coefficients

and | · |1 denotes the l1-norm on Cd(X,R) associated with the basis of singular

simplices.
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Definition 2.4.1 ([Gro82]). Let M be an oriented closed connected d-dimensional

manifold. Then the simplicial volume of M is defined by

‖M‖ :=
∥∥[M ]R

∥∥
1
,

where [M ]R ∈ Hd(M ;R) denotes the R-fundamental class of M .

Simplicial volume is independent of the sign of the fundamental class hence we

will talk about the simplicial volume of orientable manifolds.

2.4.2 Simplicial volume in low dimensions and gaps

For an integer d ≥ 2 we define SV(d) ⊂ R≥0 the set of simplicial volumes of

orientable closed connected d-manifolds via

SV(d) :=
{
‖M‖

∣∣M is an orientable closed connected d-manifold
}
.

There are only countably many homotopy types of orientable closed connected

manifolds. Hence the set SV(d) is countable for every d ∈ N.

The set SV(d) is also closed under addition. For d ≥ 3, this follows from the

additivity of simplicial volume under connected sums [Gro82][Fri17, Corollary 7.7]

and for d = 2 this follows from the explicit computation of SV(2) as seen in

Example 2.4.2.

Example 2.4.2 (dimension 2). For an orientable closed surface Σg of genus g ≥ 1

we have ‖Σg‖ = 2 ·
∣∣χ(Σg)

∣∣ = 4 · (g − 1) [Gro82][Fri17, Corollary 7.5]. Hence,

SV(2) = {0, 4, 8, . . .} = N[4].

We observe that the gap in simplicial volume of dimension 2 is 4.

Example 2.4.3 (dimension 3). We have [Gro82][Fri17, Corollary 7.8]

SV(3) = N
[vol(M)

v3

∣∣∣M is a complete hyperbolic 3-manifold

with toroidal boundary and finite volume
]

and where v3 is the maximum volume of an ideal simplex in H3. This shows that

there is a gap of simplicial volume in dimension 3, namely w/v3 ≈ 0.928 . . . , where

w is the volume of the Weeks manifold [GMM09].
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Example 2.4.4 (dimension 4). The smallest known Riemannian volume vol(M)

of an orientable closed connected hyperbolic 4-manifold is 64·π2/3 [CM05]. In view

of the computation of the simplicial volume of hyperbolic manifolds [Gro82][Fri17,

Chapter 7.3] this means that the smallest known simplicial volume of a hyperbolic

oriented closed connected 4-manifold is 64·π2

3·v4 ∈ [700, 800] where v4 is the maximum

volume of an ideal simplex in H4.

If Σg, Σh are orientable closed connected surfaces of genus g, h ≥ 1, respectively,

then Bucher [BK08] showed that ‖Σg×Σh‖ = 3
2
· ‖Σg‖ · ‖Σh‖. Hence, ‖Σ2×Σ2‖ =

24. This has been the smallest known non-trival simplicial volume of a 4-manifold.

2.4.3 Properties of simplicial volume

2.4.3.1 Minimal Volume

Define the minimal volume minVol(M) of a closed manifold M as the infimum

of the volumes of Riemannian metrics supported on M with sectional curvature

between −1 and 1; see [Fri17, Chapter 7.8].

Gromov showed that simplicial volume (suitably normalised) bounds the min-

imal volume of Riemannian Manifolds, namely that for a closed n-manifolds

‖M‖
(n− 1)nn!

≤ minVol(M)

holds.

2.4.3.2 Products and connected sums

For orientable closed connected manifolds M and N of dimension m and n respec-

tively we can estimate the cross product M ×N as

‖M‖ · ‖N‖ ≤ ‖M ×N‖ ≤
(
n+m

m

)
· ‖M‖ · ‖N‖.

If M and N are both orientable closed connected n-manifolds for n ≥ 3 we have

‖M#N‖ = ‖M‖+ ‖N‖

where M#N denotes the connected sum of M and N . A similar statement holds

for glueings with amenable boundaries. These results can be found in Chapter 7

of [Fri17].
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2.4.4 Duality

Bounded cohomology of groups and spaces may be used to compute the l1-semi-

norm of homology classes and hence of simplicial volume. For what follows, let

〈·, ·〉 : Hn
b (X;V )×Hn(X;V )→ V be the map given by evaluation of cochains on

chains.

Proposition 2.4.5 (duality principle [Fri17, Lemma 6.1]). Let X be a topological

space and let α ∈ Hn(X;R). Then

‖α‖1 = sup
{
〈β, α〉

∣∣ β ∈ Hn
b (X,R), ‖β‖∞ ≤ 1

}
.

Moreover, the supremum is achieved.

Cocycles β ∈ Cn
b (X,R) that satisfy ‖β‖∞ = 1 and 〈[β], α〉 = ‖α‖1 are called

extremal for α.

Corollary 2.4.6 (mapping theorem for the l1-semi-norm). Let f : X −→ Y be a

continuous map between path-connected topological spaces. If the induced homo-

morphism π1(f) : π1(X) −→ π1(Y ) is surjective and has amenable kernel, then

H•(f,R) : H•(X,R) −→ H•(Y,R) is isometric with respect to the l1-semi-norm.

Proof. We only need to combine the duality principle (Proposition 2.4.5) with the

mapping theorem in bounded cohomology (Theorem 2.2.3).
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Chapter 3

Group Extensions and Bounded
Cohomology

The material in this chapter is taken from [Heu17b]. The bounded cohomology of

a group G with trivial real coefficients is notoriously hard to compute: There is

no full characterisation of all bounded classes in Hn
b (G,R) for n = 2, 3. For n ≥ 4,

Hn
b (G,R) is usually fully unknown, even if G is a non-abelian free group.

On the other hand, for ordinary n-dimensional group cohomology Hn(G, V )

there is a well-known characterisation for n = 2, 3 in terms of group extensions.

The aim of this chapter is to develop an analogous correspondence for bounded

cohomology. For this, we first recall the classical connection between group exten-

sions and ordinary group cohomology.

Definition 3.0.1. An extension of a group G by a group N is a short exact

sequence of groups

1→ N
ι→ E

π→ G→ 1. (3.1)

We say that two group extensions 1 → N
ι1→ E1

π1→ G → 1 and 1 → N
ι2→ E2

π2→
G→ 1 of G by N are equivalent, if there is an isomorphism Φ: E1 → E2 such that

the diagram

E1

1 N G 1

E2

π1

Φ

ι1

ι2 π2
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commutes.

Any group extension of G by N induces a homomorphism ψ : G→ Out(N); see

Subsection 3.2.1. Two equivalent extensions of G by N induce the same such map

ψ : G→ Out(N). We denote by E(G,N, ψ) the set of group extensions of G by N

which induce ψ under this equivalence. If there is no danger of ambiguity we do not

label the maps of the short exact sequence i.e. we will write 1→ N → E → G→ 1

instead of (3.1).

It is well-known that one may fully characterise E(G,N, ψ) in terms of ordinary

group cohomology:

Theorem 3.0.2 ([Bro82, Theorem 6.6] [Mac49]). Let G and N be groups and

let ψ : G → Out(N) be a homomorphism. Furthermore, let Z = Z(N) be the

centre of N equipped with the action of G induced by ψ. Then there is a class

ω = ω(G,N, ψ) ∈ H3(G,Z), called obstruction, such that ω = 0 in H3(G,Z)

if and only if E(G,N, ψ) 6= ∅. In this case there is a bijection between the sets

H2(G,Z) and E(G,N, ψ).

Moreover, for a G-module Z it is possible to characterise H3(G,Z) in terms of

these obstructions:

Theorem 3.0.3 ([Bro82, Section IV, 6]). For any G-module Z and any α ∈
H3(G,Z) there is a group N with Z = Z(N) and a homomorphism ψ : G →
Out(N) extending the action of G on Z such that α = ω(G,N, ψ).

In other words, any three dimensional class in ordinary cohomology arises as

an obstruction.

The aim of this chapter is to derive analogous statements to Theorem 3.0.2 and

Theorem 3.0.3 involving bounded cohomology. This will use quasihomomorphisms

as defined and studied by Fujiwara–Kapovich in [FK16]. Let G and H be groups.

A set-theoretic function σ : G→ H is called quasihomomorphism if the set

D(σ) = {σ(g)σ(h)σ(gh)−1|g, h ∈ G}

is finite. We note that this is not the original definition of [FK16] but both defi-

nitions are equivalent; see Proposition 3.1.6.
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Definition 3.0.4. We say that an extension 1→ N
ι→ E

π→ G→ 1 of G by N is

bounded, if there is a (set theoretic) section σ : G→ E such that

(i) σ : G→ E is a quasihomomorphism and

(ii) the map φσ : G→ Aut(N) induced by σ has finite image in Aut(N).

Here φσ : G→ Aut(N) denotes the set-theoretic map φσ : g 7→ φσ(g) with

φσ(g)n = ι−1(σ(g)ι(n)σ(g)−1).

We stress that φσ is in general not a homomorphism. See Remark 3.1.2 for the

notation. Condition (ii) may seem artificial but is both natural and necessary; see

Remark 3.1.4. We denote the set of all bounded extensions of a group G by N

which induce ψ by Eb(G,N, ψ) and mention that this is a subset of E(G,N, ψ).

Analogously to Theorem 3.0.2 we will characterise the set Eb(G,N, ψ) ⊂ E(G,N, ψ)

using bounded cohomology.

Theorem A. Let G and N be groups and suppose that Z = Z(N), the centre of

N , is equipped with a norm ‖ · ‖ such that (Z, ‖ · ‖) has finite balls. Furthermore,

let ψ : G→ Out(N) be a homomorphism with finite image.

There is a class ωb = ωb(G,N, ψ) ∈ H3
b(G,Z) such that ωb = 0 in H3

b(G,Z) if

and only if Eb(G,N, ψ) 6= ∅ and c3(ωb) = ω is the obstruction of Theorem 3.0.2.

If Eb(G,N, ψ) 6= ∅, then the bijection between the sets H2(G,Z) and E(G,N, ψ)

described in Theorem 3.0.2 restricts to a bijection between im(c2) ⊂ H2(G,Z) and

Eb(G,N, ψ) ⊂ E(G,N, ψ).

Here, cn : Hn
b (G,Z) → Hn(G,Z) denotes the comparison map; see Subsection

2.2.1. We say that a normed group or module (Z, ‖ · ‖) has finite balls if for every

K > 0 the set {z ∈ Z | ‖z‖ ≤ K} is finite. Theorem A is applied to examples in

Subsection 3.4.1.

Just as in Theorem 3.0.3 we may ask which elements of H3
b(G,Z) may be

realised by obstructions. For a G-module Z we define the following subset of

H3
b(G,Z):

F(G,Z) := {Φ∗α ∈ H3
b(G,Z) | Φ: G→M,α ∈ H3

b(M,Z)}
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where Φ: G→M is a homomorphism, M is a finite group, and where Φ∗α denotes

the pullback of α via the homomorphism Φ. Note that as M is finite, H3(M,Z) =

H3
b(M,Z). Analogously to Theorem 3.0.3 we will show:

Theorem B. Let G be a group, let Z be a normed G-module with finite balls and

such that G acts on Z via finitely many automorphisms. Then

{ωb(G,N, ψ) ∈ H3
b(G,Z) | Z = Z(N) and ψ induces the action on G} = F(G,Z)

as subsets of H3
b(G,Z).

As finite groups are amenable this shows that all such classes in H3
b(G,Z) will

vanish under a change to real coefficients; see Subsection 2.2.1. We prove Theorem

A and B following the outline of the classical proofs in [Bro82].

Organisation of this chapter

This chapter is organised as follows: In Section 3.1 we recall well-known facts about

outer automorphisms and prove the equivalent definitions of quasihomomorphisms.

In Section 3.2 we will reformulate the problem of characterising group extensions

using non-abelian cocycles ; see Definition 3.2.2. Using this characterisation, we

will prove Theorem A in Subsection 3.2.4. In Section 3.3 we prove Theorem B

which characterises the set of classes arising as obstructions ωb. In Section 3.4

we give examples to show that the assumptions of Theorem A are necessary and

discuss generalisations.

3.1 Preliminaries

In this section we recall notation and conventions regarding the (outer) automor-

phisms in Subsection 3.1.1 and recall and discuss quasihomomorphisms in Subsec-

tion 3.1.3.

3.1.1 Aut and Out

Let N be a group and let Aut(N) be the group of automorphisms of N . Recall

that Inn(N) denotes the group of inner automorphisms. This is, the subgroup of
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Aut(N) whose elements are induced by conjugations of elements in N . There is a

map φ : N → Inn(N) via φ : n→ φn where φn : g 7→ ngn−1. Recall that Inn(N) is

a normal subgroup of Aut(N) and that the quotient Out(N) = Aut(N)/Inn(N)

is the group of outer automorphisms of N . It is well-known that there is an exact

sequence

1→ Z → N → Inn(N)→ Aut(N)→ Out(N)→ 1

where Z = Z(N) denotes the centre of N and all the maps are the natural ones.

We will frequently use the following facts. Let G be a group. Any homomorphism

ψ : G→ Out(N) induces an action on Z = Z(N). This fact is also proved in detail

in Subsection 3.2.1. Moreover, if n1, n2 ∈ N are two elements such that for every

g ∈ N , φn1(g) = φn2(g) then n1 and n2 just differ by an element in the centre, i.e.

there is z ∈ Z(N) such that n1 = zn2. This may be seen by the exactness of the

above sequence.

3.1.2 Non-degenerate cocycles

To show Theorem B of this chapter it will be helpful to work with non-degenerate

chains. A map α ∈ Cn(G, V ) is called non-degenerate if α(g1, . . . , gn) = 0 whenever

gi = 1 for some i = 1, . . . , n. We define NC0(G, V ) = NC0
b (G, V ) = V and

moreover NCn(G, V ) = {α ∈ Cn(G, V ) | α non-degenerate} and NCn
b (G, V ) =

{α ∈ Cn
b (G, V ) | α non-degenerate} and observe that δ∗ sends non-degenerate

maps to non-degenerate maps.

Proposition 3.1.1. The homology of (NC∗(G, V ), δ∗) is Hn(G, V ) and the ho-

mology of (NC∗b (G, V ), δ∗) is Hn
b (G, V ).

Proof. See Section 6 of [Mac67], where an explicit homotopy between the com-

plexes (NC∗(G, V ), δ∗) and (C∗(G, V ), δ∗) is constructed. Moreover, one may see

that this homotopy preserves bounded maps and hence yields a homotopy between

(NC∗b (G, V ), δ∗) and (C∗b (G, V ), δ∗).

30



3.1.3 Properties of quasihomomorphisms

Recall from Subsection 2.2.6 that a (set-theoretic) map σ : G → H between two

groups G and H is called quasihomomorphisms if the set

D(σ) = {σ(g)σ(h)σ(gh)−1 | g, h ∈ G}

is finite; see Definition 2.2.8. This set is called the defect set and the group ∆(σ) <

H generated by D(σ) is called the defect group. The map d: G×G→ D(Σ) < H

defined by

d: (g, h) 7→ σ(g)σ(h)σ(gh)−1

is called the defect map.

This definition is slightly different from the definition of Fujiwara–Kapovich in

[FK16]. Here, the authors called a map σ : G → H a quasihomomorphism if the

set

D̄(σ) = {σ(h)−1σ(g)−1σ(gh) | g, h ∈ G}

is finite. We show that both definitions agree in Proposition 3.1.6, proven at the

end of this Subsection.

Every set theoretic map σ : G→ H with finite image and every homomorphism

are quasihomomorphisms for “trivial” reasons. We may also construct different

quasihomomorphisms using quasimorphisms φ : G→ Z: Let C < H be an infinite

cyclic subgroup and let τ : Z→ H be a homomorphism such that τ(Z) = C. Then

it is easy to check that for every quasimorphism φ : G→ Z the map τ ◦φ : G→ H

is a quasihomomorphism.

Fujiwara–Kapovich showed that if the target H is a torsion-free hyperbolic

group then the above mentioned maps are the only possible quasihomomorphisms.

To be precise in this case every quasihomomorphism σ : G → H has either finite

image, is a homomorphism, or maps to a cyclic subgroup of H; see Theorem 4.1

of [FK16].

We recall basic properties of quasihomomorphisms. For what follows we use

the following convention.

Remark 3.1.2. If α ∈ Aut(G) and g ∈ G then αg denotes the element α(g) ∈ G. If

a ∈ G is an element then ag denotes conjugation by a, i.e. the element aga−1 ∈ G.
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Sometimes we successively apply automorphisms and conjugations. For example,
aαg denotes the element aα(g)a−1 ∈ G.

Proposition 3.1.3 ( [FK16, Lemma 2.5] ). Let σ : G→ H be a quasihomomor-

phism, let D and ∆ be as above and let H0 < H be the subgroup of H generated

by σ(G). Then ∆ is normal in H0. The function φ : G → Aut(∆) defined via

φ(g) : a 7→σ(g) a has finite image and its quotient ψ : G→ Out(∆) is a homomor-

phism with finite image. Moreover, the pair (d, φ) satisfies

φ(g)d(h, i)d(g, hi) = d(g, h)d(gh, i)

for all g, h, i ∈ G.

Proof. For any g, h, i ∈ G we calculate

d(g, h)d(gh, i) = σ(g)σ(h)σ(i)σ(ghi)−1 = σ(g)d(h, i)σ(g)−1d(g, hi)

=φ(g) d(h, i)d(g, hi)

so (d, φ) satisfies the identity of the proposition. Rearranging terms we see that

σ(g)d(h, i) = d(g, h)d(gh, i)d(g, hi)−1

so σ(g) conjugates any d(h, i) ∈ D into the finite set D ·D ·D−1. Here, for two sets

A,B ⊂ H, we write A ·B = {a · b ∈ H | a ∈ A, b ∈ B} and A−1 denotes the set of

inverses of A. This shows that ∆ is a normal subgroup of H0, as D generates ∆,

and that φ : G→ Aut(∆) has finite image.

To see that the induced map ψ : G→ Out(∆) is a homomorphism, let g, h ∈ G
and a ∈ ∆. Observe that

φ(g)φ(h)a = σ(g)σ(h)aσ(h)−1σ(g)−1

=d(g,h) σ(gh)a

and hence φ(g) ◦ φ(h) and φ(gh) differ by an inner automorphism. We conclude

that ψ(g) ◦ ψ(h) = ψ(gh) as elements in Out(∆). So ψ : G→ Out(∆) is a homo-

morphism. This shows Proposition 3.1.3.
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Remark 3.1.4. In light of Proposition 3.1.3 the extra assumption in Theorem A

that the conjugation by the quasihomomorphism induces a finite image in Aut(N)

is natural: Given a short exact sequence 1 → N → E → G → 1 that admits a

quasihomomorphic section σ : G→ E one may see that 1→ ∆→ E0 → G→ 1 is

a short exact sequence where ∆ = ∆(σ) < N and E0 = 〈σ(G)〉 < E and the map

to Aut(∆) has finite image. In fact this assumption is necessary as Example 3.4.2

shows.

Proposition 3.1.5. Let σ : G → H be a quasihomomorphism. Then the map

σ̃ : G→ H defined via

σ̃(g) =

{
1 if g = 1

σ(g) else

is also a quasihomomorphism.

Proof. An immediate calculation shows that D(σ̃) ⊂ D(σ) ∪ {1}.

We will use the last proposition to assume that quasihomomorphic sections of

extensions satisfy σ(1) = 1.

We can now show that both definitions of quasihomomorphisms agree.

Proposition 3.1.6. Let G,H be groups and let σ : G→ H be a set-theoretic map.

Then σ is a quasihomomorphism in the sense of Definition 2.2.8 if and only if it

is a quasihomomorphism in the sense of Fujiwara–Kapovich ([FK16]) i.e. if and

only if D̄(σ) is finite.

Proof. Recall that for a set-theoretic map σ : G→ H we defined D̄(σ) ⊂ H as

D̄(σ) := {σ(h)−1σ(g)−1σ(gh) | g, h ∈ G}.

Suppose that σ : G→ H is a quasihomomorphism in the sense of Definition 2.2.8.

We start by noting the following easy property.

Claim 3.1.7. Let σ : G → H be a quasihomomorphism with defect group ∆ and

let A ⊂ ∆ be a finite subset of ∆. Then the set

{σ(g)A | g ∈ G}

is also a finite subset of ∆.
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Proof. By Proposition 3.1.3, the set of automorphisms {a 7→σ(g) a | g ∈ G} ⊂
Aut(∆) is finite. Hence we see that the set {σ(g)A | g ∈ G} is the image of a

finite set of ∆ under finitely many automorphisms of ∆ and hence a finite subset

of ∆.

Recall thatD = D(σ), the defect of σ, is defined asD(σ) := {σ(g)σ(h)σ(gh)−1 |
g, h ∈ G}. Observe that d(1, 1) = σ(1)σ(1)σ(1)−1 = σ(1) and hence σ(1) ∈ D.

Moreover, we see that d(g, g−1) = σ(g)σ(g−1)σ(1)−1, hence σ(g)−1 ∈ σ(g−1) ·D0,

where D0 = σ(1)−1 ·D−1 ⊂ ∆, a finite set. Combining the above expressions we

see that for every g, h ∈ G,

σ(h)−1σ(g)−1σ(gh) ∈ σ(h−1)D0σ(g−1)D0D
−1
0 σ((gh)−1)−1.

Now observe that the set

D1 = {σ(g−1)D0D
−1
0 σ(g−1)−1 | g ∈ G} ⊂ ∆

is finite by Claim 3.1.7. Hence

σ(h)−1σ(g)−1σ(gh) ∈ σ(h−1)D0D1σ(g−1)σ((gh)−1).

Using the claim again we see that

D2 = {σ(h−1)D0D1σ(h−1)−1 | h ∈ G}

is finite and hence that

D̄(σ) = {σ(h)−1σ(g)−1σ(gh) | g, h ∈ G} ⊂ D2σ(h−1)σ(g−1)σ((gh)−1) ⊂ D2D

so D̄(σ) is indeed a finite set. This shows that any quasihomomorphism in the

sense of Definition 2.2.8 is a quasihomomorphism in the sense of [FK16].

Now assume that σ : G→ H is a map such that the set D̄ = D̄(σ) is finite and

let ∆̄ be the group generated by D̄.

Just as before we have the following claim:

Claim 3.1.8. Let f : G→ H be a map such that D̄ = D̄(f) is finite and let ∆̄ be

the group generated by D̄. If A ⊂ ∆̄ if a finite subset of ∆̄ then the set

{σ(g)−1

A | g ∈ G}

is also a finite subset of ∆̄.
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Proof. This follows from the same argument as for Claim 3.1.7 using Lemma 2.5

of [FK16] instead of Proposition 3.1.3.

Observe again that σ(1)−1 = σ(1)−1σ(1)−1σ(1) ∈ D̄(σ) and using that for all

g ∈ G, σ(g)−1σ(g−1)−1σ(1) ∈ D̄ we see that σ(g) ∈ σ(g−1)−1D̄0 where D̄0 =

σ(1)D̄.

Hence for every g, h ∈ G,

σ(g)σ(h)σ(gh)−1 ∈ σ(g−1)−1D̄0σ(h−1)−1D̄0D̄
−1
0 σ(h−1g−1)

By Claim 3.1.8, we see that the set

D̄1 = {σ(h−1)−1D̄0D̄
−1
0 σ(h−1) | h ∈ G}

is finite and hence

d(g, h) = σ(g)σ(h)σ(gh)−1 ∈ σ(g−1)−1D̄0D̄1σ(h−1)−1σ(h−1g−1).

Using the claim once more we see that the set

D̄2 = {f(g−1)−1D̄0D̄1f(g−1) | g ∈ G}

is finite. Finally,

d(g, h) = σ(g)σ(h)σ(gh)−1 ∈ D̄2σ(g−1)−1σ(h−1)−1σ(h−1g−1) ⊂ D̄2D̄

which is a finite set. Hence D(σ) is finite. So every quasihomomorphism in the

sense of [FK16] is also a quasihomomorphism in the sense of Definition 2.2.8.

We use Definition 2.2.8 as it is more natural in the context of group extensions.

3.2 Extensions and proof of Theorem A

Recall from the introduction that an extension of a group G by a group N is a

short exact sequence

1→ N → E → G→ 1

and that each such extension induces a homomorphism ψ : G→ Out(N). We will

recall the construction of such ψ in Subsection 3.2.1.
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In Subsection 3.2.2 we will define non-abelian cocycles (see Definition 3.2.2) for

group extensions of G by N which induce ψ. Those are certain pairs of functions

(e, φ) where e : G×G→ N and φ : G→ Aut(N).

We will see that every group extension of G by N inducing ψ gives rise to

a non-abelian cocycle (e, φ) in Proposition 3.2.3. On the other hand every non-

abelian cocycle (e, φ) gives rise to an extension 1 → N → E(e, φ) → G → 1;

see Proposition 3.2.4. We will use this correspondence to prove Theorem A in

Subsection 3.2.4. The proof will follow the outline of [Bro82], Chapter VI, 6.

3.2.1 Group extensions

Let 1→ N
ι→ E

π→ G→ 1 be an extension ofG byN and let σ : G→ E be any set-

theoretic section of π : E → G. Then σ : G→ E induces a map φσ : G→ Aut(N)

via φσ(g) : n 7→ ι−1(σ(g)ι(n)). See Remark 3.1.2 for notation. Let σ′ : G → E be

another section of π. For every g ∈ G, π◦σ(g) = π◦σ′(g) hence there is an element

ν(g) ∈ N such that σ′(g) = ν(g)σ(g). Let φσ′ : G→ Aut(N) be the induced map

to Aut(N). We see that for every n ∈ N ,

φσ′ (g)n =ν(g)
(
φσ(g)n

)
so φσ′(g) and φσ(g) only differ by an inner automorphism. We conclude that the

projection ψ : G→ Out(N) of both φσ and φσ′ is the same map ψ : G→ Out(N).

Hence ψ does not depend on the section.

To see that ψ is a homomorphism, let g, h ∈ G. As π(σ(g)σ(h)σ(gh)−1) =

1, there is an element ν(g, h) ∈ N such that ι(ν(g, h)) = σ(g)σ(h)σ(gh)−1. In

particular, for every n ∈ N ,

φσ(g)◦φσ(h)n =ν(g,h)
(
φσ(gh)n

)
and hence φσ(g) ◦ φσ(h) and φσ(gh) only differ by an inner automorphism, so

ψ(g) ◦ ψ(h) = ψ(gh) and ψ : G→ Out(N) is indeed a homomorphism.

If 1→ N
ι1→ E1

π1→ G→ 1 and 1→ N
ι2→ E2

π2→ G→ 1 are two equivalent group

extensions (see Definition 3.0.1) with isomorphism Φ: E1 → E2 and if σ1 : G→ E1

is a section of π1 : G → E1 then it is easy to see that σ2 = Φ ◦ σ1 : G → E2 is

a section of π2 : E2 → G and that φσ1 = φσ2 . Hence the induced homomorphism

ψ : G→ Out(N) is the same. We collect these facts in a proposition:
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Proposition 3.2.1. Let 1 → N
ι→ E

π→ G → 1 be a group extension of G by

N . Any two sections σ, σ′ : G→ E of π induce the same homomorphism ψ : G→
Out(N). Moreover, two equvivalent group extensions (see Definition 3.0.1) induce

the same homomorphism ψ : G→ Out(N).

3.2.2 Non-abelian cocyclces

To show Theorem A we will transform the problem of finding all group extensions

of G by N which induce ψ to the problem of finding certain pairs (e, φ) called non-

abelian cocycles where e : G×G→ N and φ : G→ Aut(N) are certain set-theoretic

functions.

Definition 3.2.2. Let G,N be groups and let ψ : G → Out(N) be a homomor-

phism. Let e : G × G → N and φ : G → Aut(N) be set-theoretic functions such

that

(i) φ : G → Aut(N) projects to ψ : G → Out(N), φ(1) = 1 and for all g ∈ G,

e(1, g) = e(g, 1) = 1,

(ii) for all g, h ∈ G and n ∈ N , e(g,h)n =φ(g)φ(h)φ(gh)−1
n and

(iii) for all g, h, i ∈ G, φ(g)e(h, i)e(g, hi) = e(g, h)e(gh, i).

Then we say that (e, φ) is a non-abelian cocycle with respect to (G,N, ψ).

The idea of studying extensions using these non-abelian cocycles is classical; see

Chapter IV, 5.6 of [Bro82]. Here, the author simply calls this a “cocycle condition”.

In order not to confuse it with the cocycle condition of an ordinary 2-cycle we call

it “non-abelian cocycle” with respect to the data for group extensions. Consider

Remark 3.1.2 for the notation of conjugation and action of automorphisms.

Every group extension 1 → N
ι→ E

π→ G → 1 that induces ψ : G →
Out(N) yields a non-abelian cocycle with respect to (G,N, ψ): As in Subsec-

tion 3.2.1, pick a set-theoretic section σ : G → E such that σ(1) = 1, define

φσ : G → Aut(N) via φσ(g)n = ι−1
(
σ(g)ι(n)

)
and define eσ : G × G → N via

eσ : (g, h) 7→ ι−1(σ(g)σ(h)σ(gh)−1). Observe that σ is a quasihomomorphism if

and only if eσ has finite image.
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Proposition 3.2.3. Let 1→ N → E → G→ 1 be an extension which induces ψ.

1. For any section σ : G → E with σ(1) = 1 the pair (eσ, φσ) is indeed a non-

abelian cocycle with respect to (G,N, ψ).

2. Let φ : G → Aut(N) be a lift of ψ with φ(1) = 1. Then there is a section

σ : G→ E with σ(1) = 1 such that φσ = φ, for φσ as above. If the extension

is in addition bounded (see Definition 3.0.4) and φ has finite image, then σ

may be chosen to be a quasihomomorphism with σ(1) = 1.

Proof. Part (1) is classical and may be found in the proof of Theorem 5.4 of

[Bro82].

To see (2), let τ : G → E be any section of π : E → G with τ(1) = 1. Both

φ and φτ are lifts of ψ and hence differ only by an inner automorphism. Let

ν : G → N be a representative of such an inner automorphism with ν(1) = 1.

Then for every n ∈ N , g ∈ G,

φ(g)n =ν(g)
(
φτ (g)n

)
=(ν(g)τ(g)) n.

Let σ : G → E be the section defined via σ(g) = ν(g)τ(g). Then we see that

φ = φσ. Assume now that the extension is in addition bounded and that φ has

finite image. Since the extension is bounded, there is a section τ : G → E which

is a quasihomomorphism and such that φτ : G → Aut(N) has finite image. By

Proposition 3.1.5 we may assume that τ(1) = 1. We see that we may choose

ν : G→ N to also have finite image.

We claim that the section σ : G → E defined via σ : g 7→ ν(g)τ(g) is a quasi-

homomorphism. Indeed for any g, h ∈ G we calculate

σ(g)σ(h)σ(gh)−1 = ν(g)τ(g)ν(h)τ(h)τ(gh)−1ν(gh)−1

= ν(g)τ(g)ν(h)
(
τ(g)τ(h)τ(gh)−1

)
ν(gh)−1

∈ NMD(τ)N−1

where N = {ν(g) | g ∈ G}, the image of ν, M = {τ(g)ν(h) | g, h} which is finite.

So all sets on the right hand side are finite and hence σ is a quasihomomorphism.

This concludes the proof of Proposition 3.2.3.
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3.2.3 Non-abelian cocycles yield group extensions

Let (e, φ) be a non-abelian cocycle with respect to (G,N, ψ). We now describe how

(e, φ) gives rise to a group extension 1→ N → E(e, φ)→ G→ 1 which induces ψ.

For this we define a group structure on the set N ×G via

(n1, g1) · (n2, g2) = (n1
φ(g1)n2e(g1, g2), g1g2)

for two elements (n1, g1), (n2, g2) ∈ N × G. We denote this group by E(e, φ) and

define the maps ι : N → E(e, φ) via ι : n 7→ (n, 1), π : E(e, φ)→ G via π : (n, g) 7→ g

and σ : G→ E(e, φ) via σ : g 7→ (1, g).

Proposition 3.2.4. Let (e, φ) be a non-abelian cocycle with respect to (G,N, ψ)

and let E(e, φ), ι : N → E(e, φ), π : E(e, φ) → G and σ : G → E(e, φ) be as above.

Then

1. 1 → N
ι→ E(e, φ)

π→ G → 1 is an extension of G by N inducing ψ : G →
Out(N). Moreover, σ is a section of π such that e = eσ and φ = φσ.

2. If both φ : G → Aut(N) and e : G × G → N have finite image then the

extension we obtain is bounded (see Definition 3.0.4).

Proof. Part (1) is classical; see Chapter IV.6 of [Bro82] where such extensions from

non-abelian cocycles are implicitly constructed.

For part (2), suppose that both e and φ have finite image then the section

σ : G→ E(e, φ) is a quasihomomorphism as the defect is just the image of e and,

moreover, the map φσ = φ has finite image. Hence the extension is bounded. This

concludes the proof of Proposition 3.2.4.

For the proof of Theorem A we will need to determine when two non-abelian

cocycles correspond up to equivalence to the same group extension. We will need

the following statement which is stated, though not proved, at the end of IV.6 in

[Bro82].

Proposition 3.2.5. Let G, N be groups, let ψ : G→ Out(N) be a homomorphism

and let φ : G→ Aut(N) be a lift with φ(1) = 1. Let e, e′ : G×G→ N be two set-

theoretic functions such that for all g ∈ G, e(1, g) = e(g, 1) = 1 and e′(1, g) =

e′(g, 1) = 1.
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1. If (e, φ) is a non-abelian cocycle with respect to (G,N, ψ) then (e′, φ) is a

non-abelian cocycle with respect to (G,N, ψ) if and only if there is a map

c : G × G → Z(N) = Z satisfying δ2c = 0 such that for all g, h ∈ G,

e′(g, h) = c(g, h) · e(g, h) and for all g ∈ G, c(1, g) = c(g, 1) = 1.

2. If both (e, φ) and (e′, φ) are non-abelian cocycles with respect to (G,N, ψ)

then the group extensions corresponding to (e, φ) and (e′, φ) are equivalent

if and only if there is a map z : G → Z = Z(N) with z(1) = 1 such that

e(g, h) = (δ1z)(g, h)e′(g, h).

Recall that Z(N) = Z denotes the centre of N .

Proof. To see (1), note that for every g, h ∈ G, n ∈ N ,

e(g,h)n =φ(g)φ(h)φ(gh)−1

n =e′(g,h) n

by (ii) of Definition 3.2.2. Hence there is an element c(g, h) ∈ Z(N) such that

e′(g, h) = c(g, h)e(g, h) and for all g ∈ G, c(1, g) = c(g, 1) = 1. Moreover, for every

g, h, i ∈ G,

φ(g)e′(h, i)e′(g, hi) = e′(g, h)e′(gh, i)

φ(g)c(h, i)φ(g)e(h, i)c(g, hi)e(g, hi) = c(g, h)e(g, h)c(gh, i)e(gh, i)

(δ2c(g, h, i))φ(g)e(h, i)e(g, hi) = e(g, h)e(gh, i)

δ2c(g, h, i) = 1

and hence for δ2c = 0 if we restrict to Z. On the other hand the same calculation

shows that if (e, φ) is a non-abelian cocycle and c: G×G→ Z(N) satisfies δ2c = 0

then (e′, φ) is a non-abelian cocycle with e′(g, h) = c(g, h)e(g, h).

For (2) suppose that there is a z : G→ Z as in the proposition. Define the map

Φ: E(e, φ)→ E(e′, φ) via Φ: (n, g) 7→ (nz(g), g). Then for every (n1, g1), (n2, g2) ∈
E(e, φ),

Φ ((n1, g1)) · Φ ((n2, g2)) = (n1z(g1), g1) · (n2z(g2), g2)

= (n
φ(g1)
1 n2z(g1)φ(g2)z(g2)e′(g1, g2), g1g2)

= (n
φ(g1)
1 n2z(g1g2)δ1z(g1, g2)e′(g1, g2), g1g2)

= (n
φ(g1)
1 n2e(g1, g2)z(g1g2), g1g2)

= Φ ((n1, g1) · (n2, g2))
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and hence Φ is a homomorphism. It is easy to see that Φ is an isomorphism and

that Φ fits into the diagram of Definition 3.0.1. Hence the extensions corresponding

to (e, φ) and (e′, φ) are equivalent.

On the other hand suppose that the extensions 1 → N
ι→ E(e, φ)

π→ G → 1

and 1 → N
ι′→ E(e′, φ)

π′→ G → 1 are equivalent with sections σ, σ′ as before with

Isomorphism Φ: E(e, φ)→ E(e′, φ).

Note that for all g ∈ G, π′ ◦ Φ ((1, g)) = g and hence the second coordinate of

Φ((1, g)) ∈ E(e, φ) is g. Define z : G → N via Φ((1, g)) = (z(g), g). Observe that
σ(g)ι(n) = (φ(g)n, 1) and σ′(g)ι(n) = (φ(g)n, 1) and hence σ(g) and σ′(g) only differ

by an element in the centre hence z(g) ∈ Z. Note that for every g, h ∈ G,

(e(g, h), 1) = σ(g)σ(h)σ(gh)−1

Φ
(

(e(g, h), 1)
)

= Φ
(
σ(g)

)
· Φ
(
σ(h)

)
· Φ
(
σ(gh)

)−1

(e(g, h), 1) = (z(g)φ(g)z(h)z(gh)−1e′(g, h), 1).

Comparing the last line we see that e(g, h) = δ1z(g, h)e′(g, h) which concludes the

proposition.

3.2.4 Proof of Theorem A

We can now prove Theorem A using the correspondence of group extensions with

non-abelian cocycles.

Theorem A. Let G and N be groups and suppose that Z = Z(N), the centre of

N , is equipped with a norm ‖ · ‖ such that (Z, ‖ · ‖) has finite balls. Furthermore,

let ψ : G→ Out(N) be a homomorphism with finite image.

There is a class ωb = ωb(G,N, ψ) ∈ H3
b(G,Z) such that ωb = 0 in H3

b(G,Z) if

and only if Eb(G,N, ψ) 6= ∅ and c3(ωb) = ω is the obstruction of Theorem 3.0.2.

If Eb(G,N, ψ) 6= ∅, then the bijection between the sets H2(G,Z) and E(G,N, ψ)

described in Theorem 3.0.2 restricts to a bijection between im(c2) ⊂ H2(G,Z) and

Eb(G,N, ψ) ⊂ E(G,N, ψ).

Recall that a normed G-module Z is said to have finite balls if for every K > 0

the set {z ∈ Z | ‖z‖ ≤ K} is finite. We will split the proof into several claims.

Claim 3.2.6 associates to a tuple (G,N, ψ) as in the theorem a function ζ : G×G→
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N which we then use to define the obstruction class ωb = [ob] ∈ H3
b(G,Z) in

Equation (3.2). In Claims 3.2.7 and 3.2.8 we see that ob is indeed a bounded

cocycle and that ωb = [ob] ∈ H3
b(G,Z) is independent of the choices made. Finally

in Claim 3.2.9 we see that ωb indeed encodes if (bounded) extensions for the data

(G,N, ψ) exist. In Claim 3.2.10 we construct a bijection Ψ between H2(G,Z)

(resp. im(c2)) and (bounded) extensions.

Let G, N , ψ : G → Out(N) and Z, ‖ · ‖ be as in the theorem. Choose a lift

φ : G→ Aut(N) of ψ with finite image such that φ(1) = 1.

Claim 3.2.6. There is a function ζ : G×G→ N such that for all g, h ∈ G, n ∈ N ,

ζ(g,h)n =φ(g)φ(h)φ(gh)−1

n

where ζ has finite image in N and for all g ∈ G, ζ(g, 1) = ζ(1, g) = 1.

Proof of Claim 3.2.6. For g, h ∈ G we have that ψ(g)ψ(h)ψ(gh)−1 = 1, since ψ is

a homomorphism. Hence for every g, h ∈ G, the map φ(g)φ(h)φ(gh)−1 ∈ Aut(N)

is an inner automorphism.

As φ has finite image in Aut(N), the function (g, h) 7→ φ(g)φ(h)φ(gh)−1 has

finite image in Inn(N) < Aut(N). We may find a lift ζ : G×G→ N of this map

such that ζ has finite image and such that ζ(1, g) = ζ(g, 1) = 1. This shows Claim

3.2.6.

We now define the obstruction class. Define ob : G × G × G → N so that for

all g, h, i ∈ G,
φ(g)ζ(h, i)ζ(g, hi) = ob(g, h, i)ζ(g, h)ζ(gh, i) (3.2)

and observe that ob necessarily has finite image as both ζ : G × G → N and

φ : G → Aut(N) have finite image. Also, observe that ob(g, h, i) = 1 if one of

g, h, i ∈ G is trivial.

Claim 3.2.7. The function ob : G × G × G → N maps to Z = Z(N) < N the

centre of N . Moreover, ob is a non-degenerate bounded cocycle, i.e. δ3 ob = 0.
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Proof of Claim 3.2.7. First we show that ob maps to the centre of N . Observe

that for all g, h, i ∈ G and n ∈ N ,

φ(g)ζ(h,i)ζ(g,hi)n =φ(g)φ(h)φ(i)φ(hi)−1φ(g)−1

(φ(g)φ(hi)φ(ghi)−1

n)

=φ(g)φ(h)φ(i)φ(ghi)−1

n

=φ(g)φ(h)φ(gh)−1

(φ(gh)φ(i)φ(ghi)−1

n)

=ζ(g,h)ζ(gh,i) n

and hence φ(g)ζ(h, i)ζ(g, hi) and ζ(g, h)ζ(gh, i) induce the same map by conjugation

on N and hence just differ by an element of the centre so ob(g, h, i) ∈ Z. Since ζ

and φ have finite image, so does ob, i.e. ob ∈ C3
b (G,Z) and it is easy to see that ob

is non-degenerate.

To see that ob satisfies δ3 ob = 0 we calculate

φ(g)φ(h)ζ(i, k)φ(g)ζ(h, ik)ζ(g, hik)

for g, h, i, k ∈ G in two different ways. First observe that

φ(g)φ(h)ζ(i, k)φ(g)ζ(h, ik)ζ(g, hik) =φ(g)φ(h)ζ(i, k)
(
φ(g)ζ(h, ik)ζ(g, hik)

)
=φ(g)φ(h)ζ(i, k) ob(g, h, ik)ζ(g, h)ζ(gh, ik)

=ζ(g, h)φ(gh)ζ(i, k) ob(g, h, ik) ob(g, h, ik)

=ζ(g, h)ζ(gh, i)ζ(ghi, k) ob(g, h, ik) ob(gh, i, k)

then observe that

φ(g)φ(h)ζ(i, k)φ(g)ζ(h, ik)ζ(g, hik) =
(
φ(g)φ(h)ζ(i, k)φ(g)ζ(h, ik)

)
ζ(g, hik)

=φ(g) (ob(h, i, k)ζ(h, i)ζ(hi, k)) ζ(g, hik)

=φ(g)ζ(h, i)ζ(g, hi)ζ(ghi, k)φ(g) ob(h, i, k) ob(g, hi, k)

=ζ(g, h)ζ(gh, i)ζ(ghi, k) ob(g, h, i)
φ(g) ob(h, i, k) ob(g, hi, k).

Finally, comparing these two terms yields

δ3 ob(g, h, i, k) =φ(g) ob(h, i, k)−ob(gh, i, k)+ob(g, hi, k)−ob(g, h, ik)+ob(g, h, i) = 0.

So ob indeed defines a bounded cocycle. This shows Claim 3.2.7.
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Claim 3.2.8. The class [ob] ∈ H3
b(G,Z) is independent of the choices made for ζ

and φ.

Proof of Claim 3.2.8. Let φ, φ′ : G→ Aut(N) be two lifts of ψ as above and choose

corresponding functions ζ, ζ ′ : G→ N representing the defect of φ and φ′ as above.

There is a finite function ν : G→ N with finite image such that φ(g) = ν̄(g)φ′(g)

where ν̄(g) is the element in Inn(N) ⊂ Aut(N) corresponding to the conjugation

by ν(g). We calculate

φ(g)φ(h)φ(gh)−1 = ν̄(g)φ
′(g)ν̄(h)

(
φ′(g)φ′(h)φ′(gh)−1

)
ν̄(gh)−1.

We see that for every n ∈ N ,

ζ(g,h)n =φ(g)φ(h)φ(gh)−1

n

=ν̄(g)φ
′(g)ν̄(h)(φ′(g)φ′(h)φ′(gh)−1)ν̄(gh)−1

n

=ν(g)φ
′(g)ν(h)ζ′(g,h)ν(gh)−1

n.

So ζ(g, h) and ν(g)φ
′(g)ν(h)ζ ′(g, h)ν(gh)−1 only differ by an element of the centre.

Hence define z(g, h) ∈ Z via

ζ(g, h) = z(g, h)ν(g)φ
′(g)ν(h)ζ ′(g, h)ν(gh)−1

and note that z : G × G → Z is a function with finite image as all functions

involved in its definition have finite image.

It is a calculation to show that ob, the obstruction defined via the choices φ

and ζ and o′b, the obstruction defined via the choices φ′ and ζ ′ differ by δ2z and

hence define the same class in bounded cohomology. This shows Claim 3.2.8.

We call this class [ob] ∈ H3
b(G,Z) the obstruction for extensions G by N induc-

ing ψ and denote it by ωb(G,N, ψ) or ωb. We have seen that ωb is a well defined

class that depends only on G, N and ψ : G → Out(N). Next we show that it is

an obstruction to (bounded) extensions.

Claim 3.2.9. Let ωb ∈ H3
b(G,Z) be as above. Then ωb = 0 ∈ H3

b(G,Z) if and only

if Eb(G,N, ψ) 6= ∅. Moreover, c3(ωb) is equal to the classical obstruction.

Recall that c3 : H3
b(G,Z)→ H3(G,Z) denotes the comparison map.
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Proof of Claim 3.2.9. Suppose that c3(ωb) = 0 ∈ H3(G,Z). Then there is β ∈
C2(G,Z) possibly with unbounded, i.e. infinite image, such that

ob(g, h, i) =φ(g) β(h, i)− β(gh, i) + β(g, hi)− β(g, h) (3.3)

for all g, h, i ∈ G. Moreover we may choose β such that for all g ∈ G, β(1, g) =

β(g, 1) = 0 by Proposition 3.1.1 since ob is non-degenerate.

Define e : G × G → N via e(g, h) = ζ(g, h)β(g, h)−1. We will show that (e, φ)

is a non-abelian cocycle with respect to (G,N, ψ). Indeed, φ is a lift of ψ which

satisfies φ(1) = 1 and for all g ∈ G, e(g, 1) = e(1, g) = 1. Moreover, observe that

for all g, h ∈ G and n ∈ N ,

e(g,h)n =ζ(g,h)β(g,h)−1

n =ζ(g,h) n =φ(g)φ(h)φ(gh)−1

n

as β(g, h) is in the centre of N . Finally, for all g, h, i ∈ G we calculate

φ(g)ζ(h, i)ζ(g, hi) = ob(g, h, i)ζ(g, h)ζ(gh, i)

φ(g)
(
ζ(h, i)β(h, i)−1

)
ζ(g, hi)β(g, hi)−1 = ζ(g, h)β(g, h)−1ζ(gh, i)β(gh, i)−1

φ(g)e(h, i)e(g, hi) = e(g, h)e(gh, i)

and hence indeed (e, φ) is a non-abelian cocycle with respect to (G,N, ψ).

By Proposition 3.2.4, (e, φ) gives rise to an extension of G by N which induces

ψ and hence E(G,N, ψ) 6= ∅.
Analogously, suppose that ωb = 0 in H3

b(G,Z). Then we may find β ∈ C3
b (G,Z)

satisfying Equation (3.3), but with bounded i.e. finite image. Hence if we set

e(g, h) = ζ(g, h)β(g, h)−1, we see that e(g, h) has finite image as well, as both ζ

and e have. By the above argument (e, φ) is a non-abelian cocycle and, as both e

and φ have finite image, (e, φ) gives rise to a bounded extension of (N,G, ψ) by

(2) of Proposition 3.2.4. Hence Eb(G,N, ψ) 6= ∅.
On the other hand, suppose that E(G,N, ψ) 6= ∅. This means that there is some

extension 1→ N → E → G→ 1 of G by N which induces ψ. By Propositin 3.2.3,

there is a section σ : E → G such that φσ = φ and then (eσ, φ) is a non-abelian

cocycle with respect to (G,N, ψ).

Observe that for all g, h ∈ G, n ∈ N ,

eσ(g,h)n =φ(g)φ(h)φ(gh)−1

n =ζ(g,h) n
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and hence there is an β(g, h) ∈ Z < N such that eσ(g, h) = ζ(g, h)β(g, h)−1. As

(eσ, φ) satisfies (iii) of Definition 3.2.2, we see that for all g, h, i ∈ G

φ(g)(eσ(h, i))eσ(g, hi) = eσ(g, h)eσ(gh, i)

φ(g)
(
ζ(h, i)β(g, h)−1

)
ζ(g, hi)β(g, hi)−1 = ζ(g, h)β(g, h)−1ζ(gh, i)β(gh, i)−1

φ(g)ζ(h, i)ζ(g, hi) =
(φ(g)

β(h, i)− β(gh, i)

+β(g, hi)− β(g, h)
)
ζ(g, h)ζ(gh, i)

so

ob(g, h, i) =φ(g) β(h, i)− β(gh, i) + β(g, hi)− β(g, h) = δ2β(g, h, i)

and hence c3(ωb) = 0 ∈ H3(G,Z).

Now suppose that Eb(G,N, ψ) 6= ∅. This means that there is some extension

1 → N → E → G → 1 of G by N which induces ψ and which is in addition

bounded. Applying (2) of Proposition 3.2.3 once more we see that there is a

section σ : G → E such that σ is a quasihomomorphism satisfying that σ(1) = 1

by Proposition 3.1.5 and φσ = φ. As σ is a quasihomomorphism, eσ has finite

image.

As eσ and ζ have finite image the map β ∈ C2(G,Z) defined via eσ(g, h) =

ζ(g, h)β(g, h)−1 also has finite image and hence β ∈ C2
b (G,Z). The above calcula-

tions show that ob = δ2β and hence ωb = 0 in H3
b(G,Z). This finishes the proof of

Claim 3.2.9.

Now suppose that Eb(G,N, ψ) 6= ∅. then there is an extension 1→ N → E0 →
G→ 1 which induces ψ and a section σ0 : G→ E0 such that φ = φσ0 and e0 := eσ0

have finite image and (e0, φ) is a non-abelian cocycle with respect to (G,N, ψ).

Claim 3.2.10. Let Ψ: H2(G,Z)→ E(G,N, ψ) be the map defined via

Ψ: [α] 7→ (1→ N → E(α · e0, φ)→ G→ 1) ,

where α is a non-degenerate representative. Then Ψ is a bijection which restricts

to a bijection between im(c2) ⊂ H2(G,Z) and Eb(G,N, ψ) ⊂ E(G,N, ψ).

Here α · e0 denotes the map α · e0 : G × G → N defined via α · e0 : (g, h) 7→
α(g, h) · e0(g, h).
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Proof of Claim 3.2.10. We first show that the above map is well defined: Let α ∈
C2(G,Z) be a non-degenerate cocycle. Then δ2α = 0 and hence by Proposition

3.2.5, (α · e0, φ) is a non-abelian cocycle with respect to (G,N, ψ). If [α′] = [α] in

H2(G,Z) then there is an element z ∈ C1(G,Z) such that α = α′ + δ1z. Then,

according to point (2) of Proposition 3.2.5, the group extensions are equivalent.

Hence Ψ is well defined.

Now suppose that Ψ([α]) = Ψ([α′]). Then, according to Proposition 3.2.5

(2) we have that there is a z ∈ C1(G,Z) such that (δ1z)α′e0 = αe0 and hence

δ1zα′ = α. Hence [α] = [α′] in H2(G,Z), so Ψ is injective.

Next we show that Ψ is surjective. Let 1→ N → E ′ → G→ 1 be any extension

of G by N inducing ψ. By Proposition 3.2.3, there is a section σ′ : G → E such

that φσ′ = φ and such that (e′, φ) is a non-abelian cocycle with e′ = eσ′ . Hence

both (e′, φ) and (e0, φ) are non-abelian cocycles with respect to (G,N, ψ) and by

Proposition 3.2.5 there is a map β ∈ C2(G,Z) such that e′ = β · e0 and δ2β = 0.

Then β induces a class and hence Ψ([β]) corresponds to this extension. This shows

that Ψ is surjective and hence that Ψ is a bijection. If 1 → N → E ′ → G → 1

is a bounded extension then we may choose a section σ′ : G → E ′ such that e′ as

above has finite image. Moreover, β as above is bounded as both e′ and e0 are.

Hence [β] ∈ im(c2) and hence Φ(im(c2)) ⊃ Eb(G,N, ψ).

Suppose that [α] ∈ im(c2). Then we may assume that α ∈ C2
b (G,Z), i.e. that

α has finite image and that α is non-degenerate. Hence α · e0 has finite image and

hene the extension corresponding to (α · e0, φ) is bounded by (2) of Proposition

3.2.4. This shows that Ψ(im(c2)) ⊂ Eb(G,N, ψ).

This concludes the proof of Theorem A.

3.3 The set of obstructions and examples

Theorem A provides a characterisation of non-trivial classes ωb ∈ H3
b(G,Z), called

obstructions. One may wonder which such classes ωb ∈ H3
b(G,Z) arise in this way.

Recall that in the case of general group extensions, every cocycle in H3(G,Z) may

be realised as such an obstruction:
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Theorem 3.0.3. For any G-module Z and any α ∈ H3(G,Z) there is a group N

with Z = Z(N) and a homomorphism ψ : G→ Out(N) extensing the G-action on

Z such that α = ω(G,N, ψ) in H3(G,N, ψ).

For a normed G-module Z with finite balls and a G-action with finite image

define the set of bounded obstructions Ob(G,Z) ⊂ H3
b(G,Z) as

Ob(G,Z) = {ωb(G,N, ψ) ∈ H3
b(G,Z) | Z = Z(N),ψ(g) z = g·z, ψ : G→ Out(N) finite}.

We refer to the introduction for the definition of F(G,Z) and observe that Theorem

B from the introduction may now be restated as follows:

Theorem B. Let G be a group and Z be a normed G-module with finite balls and

a G-action with finite image. Then

Ob(G,Z) = F(G,Z)

as subsets of H3
b(G,Z).

This fully characterises obstructions we obtain in bounded cohomology.

Proof. We have just seen that Ob(G,Z) ⊂ F(G,Z), as we may choose ωb in the

proof of Theorem A so that it factors through Out(N) via ψ : G → Out(N) and

Out(N) is a finite group.

To show F(G,Z) ⊂ Ob(G,Z) we need to show that for every finite group M

and any class α ∈ H3(M,Z) there is a group N and a homomorphism ψ : M →
Out(N) which induces α as a cocycle. We recall a construction from [Mac67].

Working with non-degenerate cocycles (see Subsection 2.2.1) we may assume that

α(1, g, h) = α(g, 1, h) = α(g, h, 1) = 0 for all g, h ∈ G.

Define the abstract symbols 〈g, h〉 for each 1 6= g, h ∈ M and set 〈g, 1〉 =

〈1, g〉 = 〈1, 1〉 = 1 for the abstract symbol 1. Let F be the free group on these

symbols and set 1 to be the identity element and set N = Z × F . Define the

function φ : M → Aut(N) so that for g ∈M the action of φ(g) on F is given by

φ(g)〈h, i〉 = α(g, h, i)〈g, h〉〈gh, i〉〈g, hi〉−1

and so that the action of φ(g) on Z is given by the M -action on Z. A direct

calculation yields that for each g ∈ M , the map φ(g) : N → N indeed defines an
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isomorphism. Here, we need the assumption α(1, g, h) = α(g, 1, h) = α(g, h, 1) =

0. It can be seen that for all n ∈ N and g1, g2 ∈ F

φ(g1)φ(g2)n =〈g1,g2〉 φ(g1g2)n

where we have to use the fact the α is a cocycle. Hence, φ : M → Aut(N) is well

defined and induces a homomorphism ψ : M → Out(N). It is easy to see that

ψ induces the M -action on Z. If M 6∼= Z2, the centre of N is Z. In this case,

to calculate ωb(M,N,ψ) we choose as representatives for φ(g)φ(h)φ(gh)−1 simply

〈g, h〉 and then see by definition that ωb(M,N,ψ) is precisely α.

If M = Z2 then the centre of N is not Z. However, we can enlarge M by setting

M̃ = M × Z2. We have both a homomorphism π : M̃ → M via (m, z) 7→ m and

a homomorphism ι : M → M̃ via m 7→ (m, 1) such that π ◦ ι = idM . Let

α̃ ∈ H3(M̃, Z) be the pullback of α via π. Let Ñ be the group constructed as

above with this cocycle and let φ̃ : M̃ → Aut(Ñ) and ψ̃ : M̃ → Out(Ñ) be the

corresponding functions. The centre of Ñ is Z. Set ψ : M → Out(Ñ) via ψ = ψ̃◦ι.
Then the obstruction ωb(M, Ñ, ψ) can be seen to be α. This shows Theorem B.

3.4 Examples and Generalisations

We discuss Examples in Subsection 3.4.1 where we show in particular that the

requirements in Definition 3.0.4 are necessary. Subsection 3.4.2 discusses possible

generalisations of Theorem A.

3.4.1 Examples

The subset Eb(G,N, ψ) ⊂ E(G,N, ψ) is generally neither empty nor all of E(G,N, ψ).

For any hyperbolic group we have Eb(G,N, ψ) = E(G,N, ψ) as the compari-

son map is surjective ([Min02]). We give different examples where the inclusion

Eb(G,N, ψ) ⊂ E(G,N, ψ) is strict.

The examples we discuss will use the Heisenberg group H3. This group fits into

the central extension

1→ Z→ H3 → Z2 → 1.
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Elements of the Heisenberg group will be described by [c, z], where c ∈ Z and z ∈
Z2. The group multiplication is given by [c1, z1]·[c2, z2] = [c1+c2+ω(z1, z2), z1+z2]

where ω(z1, z2) = det(z1, z2), the determinant of the 2×2-matrix (z1, z2). Observe

that [c, z]−1 = [−c,−z], and that [c1,z1][c2, z2] = [c2 + 2ω(z1, z2), z2]. The inner

automorphisms are isomorphic to Z2 with the identification φ : Z2 → Inn(H3)

via φ(g)[c, z] = [c + 2ω(g, z), z]. It is well-known that ω generates H2(Z2,Z) and

that ω can not be represented by a bounded cocycle, i.e. the comparison map

c2 : H2
b(Z2,Z)→ H2(Z2,Z) is trivial.

Example 3.4.1. Let G = Z2, N = Z and let ψ : G → Out(N) be the homomor-

phism with trivial image. The direct product

1→ N → N ×G→ G→ 1 (3.4)

clearly has a quasihomomorphic section that induces a finite map to Aut(N) and

hence Eb(G,N, ψ) 6= ∅. Let Z(N) = Z be equipped with the standard norm.

Note that im(c2) = {0}, for c2 : H2
b(Z2,Z) → H2(Z2,Z) the comparison map. By

Theorem A, Eb(Z2,Z, ψ) consists of exactly one element, which is the direct product

described above. Note that the Heisenberg extension

1→ Z→ H3 → Z2 → 1

is not equivalent to (3.4). This can be seen as H3 is not abelian. Hence this

extension is not bounded. So in this case

∅ 6= Eb(Z2,Z, id) ( E(Z2,Z, id).

Example 3.4.2. The assumption that the quasihomomorphism σ : G → E has

to induce a map φσ : G → Aut(N) with finite image may seem artificial, as the

induced homomorphism ψ : G → Out(N) already has finite image. However it is

necessary as the following example shows.

Consider extensions of G = Z2 by N = H3 which induce ψ : G → Out(N)

with trivial image. Again, Eb(G,N, ψ) is not empty as it contains the extension

corresponding to the direct product 1 → H3 → H3×Z2 → Z2 → 1. More-

over, Z(N) = Z(H3) = Z and just as in Example 3.4.1 the comparison map

c2 : H2
b(Z2,Z)→ H2(Z2,Z) is trivial, i.e. im(c2) = {0}. So up to equivalence there
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is just one bounded extension, namely the one corresponding to the direct product

H3×Z2.

Pick an isomorphism φ : Z2 → Inn(H3). We may construct the extension

1→ H3 → H3 oφZ2 → Z2 → 1 (3.5)

where H3 oφZ2 denotes the semi-direct product. and observe that the action of

Z2 on the centre of H3 is trivial as the automorphisms are all inner.

Claim 3.4.3. The extension (3.5) is not equivalent to the extension 1 → H3 →
H3×Z2 → Z2 → 1.

Proof. Indeed, we show that H3 oφZ2 is not isomorphic to H3×Z2. We will show

that Z(H3×Z2) ∼= Z3 and Z(H3 oφZ2) ∼= Z, where Z(G) denotes the centre of the

group G. First, observe that

Z(H3×Z2) ∼= Z(H3)× Z(Z2) ∼= Z× Z2 ∼= Z3.

Now assume that ([c, z], n), ([c′, z′], n′) ∈ H3 oφZ2 are two elements which com-

mute. Then

([c, z], n) · ([c′, z′], n′) = ([c′, z′], n′) · ([c, z], n)

([c, z] ·n [c′, z′], n+ n′) = ([c′, z′] ·n′ [c, z], n+ n′)

([c, z] · [c′ + 2ω(n, z′), z′], n+ n′) = ([c′, z′] · [c+ 2ω(n′, z), z], n+ n′)

([c+ c′ + 2ω(n, z′) + ω(z, z′), z + z′], n+ n′) = ([c′ + c+ 2ω(n′, z) + ω(z′, z), z + z′], n+ n′)

and hence such elements satisfy

ω(n, z′) = ω(n′, z) + ω(z′, z) = ω(n′ + z′, z).

Hence, if ([c, z], n) is in the centre of H3 oφZ2, then n and z must be such that

the above equation holds for every choice of n′ and z′, and hence n = z = 0 ∈ Z2.

We conclude that the centre of H3 oφZ2 is {([c, 0], 0) | c ∈ Z} and that

Z(H3 oφZ2) ∼= Z.

Hence H3×Z2 and H3 oφZ2 cannot be isomorphic.
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So extension (3.5) is not bounded. On the other hand there are two special

sort of sections σ : G→ H3 oφZ2:

(i) The section σ1 : g 7→ (1, g) to (3.5) is a homomorphism and hence in partic-

ular a quasihomomorphism. However, the induced map φσ1 : G→ Aut(H3),

has as the image the full infinite group of inner automorphisms.

(ii) On the other hand, the section σ2 : g 7→ ([1,−g], g) induces a trivial map

φσ2 : G→ Aut(H3) as seen in the proof of Claim 3.4.3. Indeed we calculate

that for g, h ∈ G,

σ2(g)σ2(h)σ2(gh)−1 = ([ω(g, h), 0], 0)

and so D(σ2) is unbounded and σ2 is not a quasihomomorphism.

We conclude that there is a section σ1 which satisfies (i) of Definition 3.0.4

and another section σ2 which satisfies (ii) of Definition 3.0.4 but no section which

satisfies (i) and (ii) simultaneously.

3.4.2 Generalisations

One interesting aspect of Theorem A is that it characterises certain classes in third

bounded cohomology, namely the obstructions. Moreover we have seen that the

obstructions for bounded extensions factor through a finite group. Finite groups

are amenable and hence all such classes in third bounded cohomology will vanish

when passing to real coefficients.

On the other hand every class in third ordinary cohomology may be realised

by an obstruction; see Theorem 3.0.3. One may wonder if there is another type

of extensions Ẽ ⊂ E(G,N, ψ) which is empty if and only if a certain class ω̃ is

non-trivial in H3
b(G,R). This would be interesting as non-trivial classes in third

bounded cohomology with real coefficients are notoriously difficult to construct.

Recall that our Definition 3.0.4 of bounded extensions 1 → N → E → G → 1

required the existence of sections σ : G → E which satisfied two conditions.

Namely (i) that σ is a quasihomomorphism, and (ii) that the induced a map

φσ : G → Aut(N) by conjugation has finite image. One may wonder if a modi-

fication of conditions (i) and (ii) yield different such obstructions with different
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coefficients. For modifications of (i) there are some generalisations of the quasi-

morphisms by Fujiwara–Kapovich, most notably the one by Hartnick–Schweitzer

[HS16]. However, there does not seem to be a natural generalisation of condition

(ii), i.e. a generalisation of φσ having finite image. However, such a generalisation

is necessary as else the obstructions factor through a finite group and will yield

trivial classes with real coefficients. On the other hand, there has to be some re-

strictions on the sort of sections σ allowed: Consider the bounded cohomology of

a free non-abelian group F . Soma [Som97] showed that H3
b(F,R) is infinite dimen-

sional. But every extension 1→ N → E → F → 1 will even have a homomorphic

section σ : F → E. Without a condition on φσ there would be no obstruction for

such extensions.
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Chapter 4

Cup Product in Bounded
Cohomology of the Free Group

The material of this chapter is taken from [Heu17a]. This chapter will exclusively

focus on the bounded cohomology of non-abelian free groups F with trivial real

coefficients, denoted by Hn
b (F,R). We note that Hn

b (F,R) is fully unknown for any

n ≥ 4. Free groups play a distinguished rôle in constructing non-trivial classes on

other acylindrically hyperbolic groups. Due to a result by Frigerio, Pozzetti and

Sisto, any non-trivial alternating class in Hn
b (F,R) may be promoted to a non-

trivial class in Hn
b (G,R) where G is an acylindrically hyperbolic group and n ≥ 2;

see Corollary 2 of [FPS15].

All classes in the second bounded cohomology of a non-abelian free group F

with trivial real coefficients arise as the coboundary of quasimorphisms (see Sub-

section 2.2.5) i.e. for any ω ∈ H2
b(F,R) there is a quasimorphism φ : F → R

such that [δ1φ] = ω. There are many explicit constructions of quasimorphisms

φ : F → R, most prominently the one defined by Brooks [Bro81] and Rolli [Rol09];

see Subsection 2.2.5. One may hope to construct non-trivial classes in H4
b(F,R)

by taking the cup product [δ1φ] ^ [δ1ψ] ∈ H4
b(F,R) between two such quasimor-

phisms φ, ψ : F → R. We will show that this approach fails.

Theorem C. Let φ, ψ : F → R be two quasimorphisms on a non-abelian free

group F where φ and ψ are either Brooks counting quasimorphisms on a non self-

overlapping word or quasimorphisms in the sense of Rolli. Then [δ1φ] ^ [δ1ψ] ∈
H4
b(F,R) is trivial.
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We note that Michelle Bucher and Nicolas Monod have independently proved

the vanishing of the cup product between the classes induced by Brooks quasimor-

phisms with a different technique; see [BM18].

Theorem C will follow from a more general vanishing Theorem. For this, we

will first define decompositions (see Definition 4.1.1) which are certain maps ∆

that assign to each element g ∈ F a finite sequence (g1, . . . , gn) of arbitrary length

with gj ∈ F and such that g = g1 · · · gn and there is no cancellation between the

gj. We then define two new classes of quasimorphisms, namely ∆-decomposable

quasimorphisms (Definition 4.1.5) and ∆-continuous quasimorphisms (Definition

4.1.11). Each Brooks and Rolli quasimorphism will be both ∆-decomposable and

∆-continuous with respect to some decomposition ∆. We will show:

Theorem D. Let ∆ be a decomposition of F and let φ, ψ : F → R be quasi-

morphisms such that φ is ∆-decomposable and ψ is ∆-continuous. Then [δ1φ] ^

[δ1ψ] ∈ H4
b(F,R) is trivial.

We will prove Theorem D by giving an explicit bounded coboundary in terms

of φ and ψ in Theorem H. Let φ and ψ be as in Theorem D. A key observation

of this chapter is that the function (g, h, i) 7→ φ(g)δ1ψ(h, i) “behaves like a honest

cocycle with respect to ∆”. The idea of the proof of Theorem H is to mimic

the algebraic proof that honest cocycles on free groups have a coboundary; see

Subsection 4.2.1.

It was shown by Grigorchuk [Gri95] that Brooks quasimorphisms are dense

in the vector space of quasimorphisms in the topology of pointwise convergence.

In light of Theorem C one would like to deduce from this density that the cup

product between all bounded 2-classes vanishes. However, this is not possible.

The topology needed for such a deduction is the stronger defect topology. Brooks

cocycles are not dense in this topology, in fact the space of 2-cocycles is not even

separable in this topology. We therefore ask:

Question 4.0.1. Let F be a non-abelian free group. Is the cup product

^ : H2
b(F,R)× H2

b(F,R)→ H4
b(F,R)

trivial?
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Note that it is unknown if nontrivial classes in H4
b(F,R) exist. We mention that

the cup product on bounded cohomology for other groups need not be trivial. Let

G be a group with non-trivial second bounded cohomology. Then G×G admits a

non-trivial cup product

^ : H2
b(G×G,R)× H2

b(G×G,R)→ H4
b(G×G,R)

induced by the factors. See [Löh17] for results and constructions in bounded

cohomology using the cup product.

Organisation

This chapter is organised as follows: Section 4.1 defines and studies decompositions

∆ of non-abelian free groups F mentioned above as well as ∆-decomposable and ∆-

continuous quasimorphisms. In Section 4.2 we will introduce and prove Theorem

H, which will provide the explicit bounded coboundary for the cup products studied

in this chapter. The key ideas of the proof are illustrated in Subsection 4.2.1.

Theorems C and D will be corollaries of Theorem H and proved in Subsection

4.2.4.

4.1 Decomposition

The aim of this section is to introduce decompositions of F in Subsection 4.1.2.

Let F be a non-abelian free group with a fixed set of generators. Crudely, a de-

composition ∆ is a way of assigning a finite sequence (g1, . . . gk) of elements gj ∈ F
to an element g ∈ F such that g = g1 · · · gk as a reduced word and such that that

this decomposition behaves well on geodesic triangles in the Cayley graph. We will

see that any decomposition ∆ induces a quasimorphism (Proposition 4.1.6), called

∆-decomposable quasimorphism in Subsection 4.1.3. We will introduce special

decompositions, ∆triv, ∆w and ∆rolli and see that ∆triv-decomposable quasimor-

phisms are exactly the homomorphisms F → R, that Brooks quasimorphisms on

a non self-overlapping word w are ∆w-decomposable and that the quasimorphisms

in the sense of Rolli are ∆rolli-decomposable. In Subsection 4.1.4 we introduce

∆-continuous cocycles.
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4.1.1 Notation for sequences

A set A ⊂ F will be called symmetric if a ∈ A implies that a−1 ∈ A. For such a

symmetric set A ⊂ F , we denote by A∗ the set of finite sequences in A including

the empty sequence. This is, the set of all expressions (a1, . . . , ak) where k ∈ N0

is arbitrary and aj ∈ A. We will denote the element (a1, . . . , ak) ∈ A∗ by (a) and

k will be called the length of (a) where we set k = 0 if (a) is the empty sequence.

For a sequence (a), we denote by (a−1) the sequence (a−1
k , . . . , a−1

1 ) ∈ A∗ and the

element ā ∈ F denotes the product a1 · · · ak ∈ F . We will often work with multi-

indexes: The sequences (a1), (a2), (a3) ∈ A∗ will correspond to the sequences (aj) =

(aj,1, . . . , aj,nj), where nj is the length of (aj) for j = 1, 2, 3. For two sequences

(a) = (a1, . . . , ak) and (b) = (b1, . . . , bl) we define the common sequence of (a) and

(b) to be the empty sequence if a1 6= b1 and to be the sequence (c) = (a1, . . . , an)

where n is the largest integer with n ≤ min{k, l} such that aj = bj for all j ≤ n.

Moreover, (a) · (b) will denote the sequence (a1, . . . , ak, b1, . . . , bl).

4.1.2 Decompositions of F

We now define the main tool of this chapter, namely decompositions. As mentioned

in the introduction we will restrict our attention to non-abelian free groups F on

a fixed generating set S.

Definition 4.1.1. Let P ⊂ F be a symmetric set of elements of F called pieces

and assume that P does not contain the identity. A decomposition of F into the

pieces P is a map ∆: F → P∗ assigning to every element g ∈ F a finite sequence

∆(g) = (g1, . . . , gk) with gj ∈ P such that:

1. For every g ∈ F and ∆(g) = (g1, . . . , gk) we have g = g1 · · · gk as a reduced

word (no cancelation). Also, we require that ∆(g−1) = (g−1
k , . . . , g−1

1 ).

2. For every g ∈ F with ∆(g) = (g1, . . . , gk) we have ∆(gi · · · gj) = (gi, . . . , gj)

for 1 ≤ i ≤ j ≤ k. We refer to this property as ∆ being infix closed.

3. There is a constant R > 0 with the following property.

Let g, h ∈ F and let
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Figure 4.1: ∆(g), ∆(h) and ∆(h−1g−1) have sides which can be identified.

• (c1) ∈ P∗ be such that (c−1
1 ) is the common sequence of ∆(g) and ∆(gh),

• (c2) ∈ P∗ be such that (c−1
2 ) is the common sequence of ∆(g−1) and

∆(h) and

• (c3) ∈ P∗ be such that (c−1
3 ) is the common sequence of ∆(h−1) and

∆(h−1g−1).

It is not difficult to see that there are (r1), (r2), (r3) ∈ P∗ such that

∆(g) = (c−1
1 ) · (r1) · (c2)

∆(h) = (c−1
2 ) · (r2) · (c3) and

∆(h−1g−1) = (c−1
3 ) · (r3) · (c1).

Then the length of (r1), (r2) and (r3) is bounded by R. See Figure 4.1 for

a geometric interpretation and Subsection 4.1.1 for the notation of common

sequences and concatenation of sequences.

For such a pair (g, h) we will call (c1), (c2), (c3) the c-part of the ∆-triangle of (g, h)

and (r1), (r2), (r3) the r-part of the ∆-triangle of (g, h). A sequence (g1, . . . , gk)

such that

∆(g1 · · · gk) = (g1, . . . , gk)

will be called a proper ∆ sequence.

Example 4.1.2. Let S = {x1, . . . , xn} be an alphabet generating F . Every word

w ∈ F may be uniquely written as a word w = y1 · · · yk without backtracking

where yi ∈ S±. Set Ptriv = S± and define the map ∆triv : F → P∗triv by setting

∆triv : w 7→ (y1, . . . , yk)
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for w as above. Then we see that ∆triv is indeed a decomposition. Let g, h ∈ G and

let c1, c2, c3 be such that g = c−1
1 c2, h = c−1

2 c3 and gh = c−1
1 c3 as reduced words.

Then the c-part of the ∆triv-triangle of (g, h) is ∆triv(c1),∆triv(c2),∆triv(c3) and

the r-part of the ∆triv-triangle of (g, h) is (∅), (∅), (∅) where (∅) denotes the empty

sequence.

We call the map ∆triv the trivial decomposition.

Example 4.1.3. Let w ∈ F be a non self-overlapping word (see Example 2.2.6).

Every word g ∈ F may be written as g = u1w
ε1u2 · · ·uk−1w

εk−1uk, where the

uj’s may be empty, εj ∈ {−1,+1} and no uj contains w or w−1 as subwords.

It is not hard to show that this expression is unique. Observe that a reduced

word in the free group does not overlap with its inverse. Set Pw = {u ∈ F |
neither w nor w−1 are subwords of u} ∪ {w,w−1}.

We define the Brooks-decomposition on the word w as the map ∆w : F → P∗w
by setting

∆w : g → (u1, w
ε1 , u2, · · · , uk−1, w

εk−1 , uk)

for g as above. It is easy to check that this is indeed a decomposition.

Example 4.1.4. As in Example 2.2.7, suppose that F is generated by S =

{x1, . . . , xn} and observe that every non-trivial element g ∈ F may be uniquely

written as g = xm1
n1
· · · xmknk where all mj are non-zero and no consecutive nj are the

same. Set Prolli = {xmj | j ∈ {1, . . . , n},m ∈ Z}. We define the Rolli-decompostion

as the map ∆rolli : F → P∗rolli via

∆rolli : g 7→ (xm1
n1
, . . . , xmknk )

for g as above. It is easy to check that this is indeed a decomposition.

Often we just talk about the decomposition without specifying the pieces P
explicitly. From a decomposition ∆ we derive the notion of two sorts of quasi-

morphisms: ∆-decomposable quasimorphisms (Definition 4.1.5) and ∆-continuous

quasimorphisms (Definition 4.1.11).
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4.1.3 ∆-decomposable quasimorphisms

Each decomposition ∆ of F induces many different quasimorphisms on F .

Definition 4.1.5. Let ∆ be a decomposition with pieces P and let λ ∈ `∞alt(P) be

a symmetric bounded map on P , i.e. λ(p−1) = −λ(p) for every p ∈ P . Then the

map φλ,∆ : F → R defined via

φλ,∆ : g 7→
k∑
j=1

λ(gj)

where ∆(g) = (g1, . . . , gk) is called a ∆-decomposable quasimorphism.

We may check that such a φλ,∆ is indeed a quasimorphism.

Proposition 4.1.6. Let ∆ and λ be as in Definition 4.1.5. Then φλ,∆ is a sym-

metric quasimorphism. If g, g′ ∈ F are such that ∆(g · g′) = (∆(g)) · (∆(g′)) then

δ1φ(g, g′) = 0. In particular, for all g ∈ G with ∆(g) = (g1, . . . , gk) we have that

δ1φλ,∆(gj, gj+1 · · · gk) = 0 for j = 1, . . . , k − 1.

Proof. Symmetry is immediate from the assumptions on ∆(g−1) and λ. Let g, h ∈
F and let (cj), (rj), j ∈ {1, 2, 3} be as in the definition of the decomposition. We

compute

φλ,∆(g) = −
n1∑
j=1

λ(c1,j) +

m1∑
j=1

λ(r1,j) +

n2∑
j=1

λ(c2,j)

φλ,∆(h) = −
n2∑
j=1

λ(c2,j) +

m2∑
j=1

λ(r2,j) +

n3∑
j=1

λ(c3,j)

φλ,∆(gh) = −
n1∑
j=1

λ(c1,j)−
m3∑
j=1

λ(r3,j) +

n3∑
j=1

λ(c3,j)

and hence

δ1φλ,∆(g, h) = φλ,∆(g) + φλ,∆(h)− φλ,∆(gh) =

m1∑
j=1

λ(r1,j) +

m2∑
j=1

λ(r2,j) +

m3∑
j=1

λ(r3,j)

and hence |δ1φλ,∆(g, h)| ≤ 3R‖λ‖∞. Note that from this calculation we also see

that δ1φλ,∆(g, h) only depends on the r-part of the ∆-triangle for (g, h) and not

on the c-part. The second part follows immediately from property (2) of a decom-

position.
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Both Brooks and Rolli quasimorphisms are ∆-decomposable quasimorphisms

with respect to some ∆ as the following examples show:

Example 4.1.7. Let ∆triv be the trivial decomposition of Example 4.1.2. It is

easy to see that the ∆triv-decomposable quasimorphisms are exactly the homo-

morphisms φ : F → R.

Example 4.1.8. Let Pw be as in Example 4.1.3 and define λ : Pw → R by setting

λ : p 7→


1 if p = w,

−1 if p = w−1,

0 otherwise.

Then it we see that the induced decomposable quasimorphism φλ,∆w is the Brooks

counting quasimorphism on w; see Example 2.2.6.

Example 4.1.9. Let λ1, . . . , λn be as in Example 2.2.7 and let Prolli be as in

Example 4.1.4. Define λ : Prolli 7→ R by setting

λ : xmj 7→ λj(m).

Then we see that the induced quasimorphism φλ,∆rolli
is a Rolli quasimorphism;

see Example 2.2.7.

4.1.4 ∆-continuous quasimorphisms and cocycles

We will define ∆-continuous cocycles. Crudely, a cocycle ω is ∆-continuous, if

the value ω(g, h) depends “mostly” on the neighbourhood of the midpoint of the

geodesic triangle spanned by e, g, gh in the Cayley graph of F . For this, we will

first establish a notion of when two pairs (g, h) and (g′, h′) of elements in F define

triangles which are “close”.

For this we define the function N∆ : F 2×F 2 → N∪∞ as follows. Let (g, h) ∈ F 2

and (g′, h′) ∈ F 2 be two pairs of elements of F . Let (cj), (rj) for j = 1, 2, 3 be the

∆-triangle of (g, h) where (cj) has length nj and let (c′j), (r
′
j) for j = 1, 2, 3 be the

∆-triangle of (g′, h′) where (c′j) has length n′j.

We set N∆((g, h), (g′, h′)) = 0 if there is a j ∈ {1, 2, 3} such that rj 6= r′j

and N∆((g, h), (g′, h′)) = ∞ if (g, h) = (g′, h′). Else, let N∆((g, h), (g′, h′)) be the
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Figure 4.2: The ∆-triangle for (g, h) vs. the ∆-triangle for (g′, h′) and N =
N∆((g, h), (g′, h′))

largest integer N which satisfies that N ≤ min{nj, n′j} and cj,k = c′j,k for every

k ≤ N and j ∈ {1, 2, 3} such that cj 6= c′j.

Observe that N∆((g, h), (g′, h′)) = ∞ if and only if (g, h) = (g′, h′). This is

because if (g, h) 6= (g′, h′) then either there is some j such that rj 6= r′j, in which

case N∆((g, h), (g′, h′)) = 0 or there is some j such that cj 6= c′j in which case

N∆((g, h), (g′, h′)) ≤ min{nj, n′j}. Crudely, N∆ measures how much the triangle

corresponding to (g, h) agrees with the triangle corresponding to (g′, h′) arround

the “centre” of the triangle; see Figure 4.2. To illustrate N∆ we will give an

example for ∆ the trivial decomposition.

Example 4.1.10. Let ∆ be the trivial decomposition and let g, h, i ∈ F be such

that ghi has no cancellation and assume that g is not-trivial. Then we claim that

N∆((gh, i), (h, i)) = |h|, where |h| is the word-length of h. To see this observe

that the r-part of the ∆ triangles of (gh, i) and (h, i) agrees (it’s both (∅, ∅, ∅).
Moreover, the c-part of the ∆-triangles (gh, i) and (h, i) is

(∆(h)−1 ·∆(g)−1, ∅,∆(i)) = (c1, c2, c3)

and

(∆(h)−1, ∅,∆(i)) = (c′1, c
′
2, c
′
3).

We see that c2 = c′2 and c3 = c′3 but c1 6= c′1. Observe that the length of c1 is

|h| + |g| and the length of c′1 is |h|. Moreover, c1,k = c′1,k for every k ≤ |h|. This

shows that indeed N∆((gh, i), (h, i)) = |h|.
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Definition 4.1.11. Let ∆ be a decomposition of F and let N∆ be as above. A

quasimorphism φ is called ∆-continuous if φ is symmetric (i.e. φ(g−1) = −φ(g)

for every g ∈ G) and ω = δ1φ satisfies that there is a constant Sω,∆ > 0 and a

non-negative summable sequence (sj)j∈N with
∑∞

j=0 sj = Sω,∆ such that for all

(g, h), (g′, h′) ∈ F 2 we have that either (g, h) = (g′, h′) or,

|ω(g, h)− ω(g′, h′)| ≤ sN

where N = N∆((g, h), (g′, h′)). In this case we call ω ∆-continuous as well.

Crudely, a cocycle ω is ∆-continuous if its values depend mostly on the parts

of the decomposition which lies close to the centre of the triangle g, h, h−1g−1.

Many quasimorphisms are ∆-continuous as the following proposition shows.

Proposition 4.1.12. Let ∆ be a decomposition of F .

1. Every ∆-decomposable quasimorphism is ∆-continuous.

2. Every Brooks quasimorphism φ : F → R is ∆-continuous.

Proof. To see (1) observe that the proof of Proposition 4.1.6 shows that δ1φ(g, h)

does not depend on the c-part of the ∆-triangle of (g, h). Hence ifN∆((g, h), (g′, h′)) ≥
1, then δ1φ(g, h) = δ1φ(g′, h′).

For (2), suppose that δ1φ is a bounded cocycle induced by a Brooks quasi-

morphism φ on a word w and suppose that the length of w is m. The value of

the Brooks cocycle δ1φ(g, h) just depends on the m-neighbourhood of the mid-

point of the tripod with endpoints e, g, gh in the Cayley graph. Hence, whenever

N∆((g, h), (g′, h′)) ≥ m we have that δ1φ(g, h) = δ1φ(g′, h′). Note that this implies

that Brooks quasimorphisms are ∆-continuous for any decomposition ∆.

4.1.5 Triangles and quadrangles in a tree

Let g, h ∈ F . It is easy to see that there are unique elements t1, t2, d ∈ F such

that g = t−1
1 d and h = d−1t2 as reduced words and that t1, t2 and d are the paths

of the tripod with endpoints 1, g, gh in the Cayley graph of F . We will call d the

common 2-path of (g, h).
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(a) (b) (c)

Figure 4.3: Different cases for how g, h and i are aligned

For three elements g, h, i ∈ F there are three different cases how the geodesics

between the points 1, g, gh, ghi in the Cayley graph of F can be aligned. See Figure

4.3.

1. (Figure 4.3a): There are elements t1, . . . , t5 such that g = t1t2, h = t−1
2 t3t4,

i = t−1
4 t5 as reduced words.

2. (Figure 4.3b): There are elements t1, . . . , t5 such that g = t1t2t3, h = t−1
3 t4,

i = t−1
4 t−1

2 t5 as reduced words.

3. (Figure 4.3c): There are elements t1, . . . , t4 and c such that g = t−1
1 ct2,

h = t−1
2 c−1t3, i = t−1

3 ct4 as reduced words.

We will say that the common-3-path of (g, h, i) is empty in the first two cases and

c in the third case.

4.2 Constructing the bounded primitive

Recall that F is a non-abelian free group and let ∆ be a decomposition of F ; see

Definition 4.1.1. Moreover, let φ : F → R be a ∆-decomposable quasimorphism

(see Definition 4.1.5) and let ω ∈ C2
b (F,R) be a ∆-continuous symmetric 2-cocycle

(see Definition 4.1.11). We define the map ζ ∈ C3(F,R) by setting

ζ : (g, h, i) 7→
k∑
j=1

φ(gj)ω(gj+1 · · · gkh, i)
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for ∆(g) = (g1, . . . , gk). Moreover, define the maps η, γ ∈ C2(F,R) by setting

• η : (g, h) 7→ ζ(g, 1, h) and

• γ : (g, h) 7→ 1
2

(
ζ(d, d−1, d) + ζ(d−1, 1, d)

)
for d the common 2-path of (g, h);

see Subsection 4.1.5.

We will show the following theorem:

Theorem H. Let φ be a ∆-decomposable quasimorphism and let ω be a symmetric,

∆-continuous 2-cocycle. Moreover, let γ and η be as above. Then β ∈ C3(F,R)

defined by setting

β : (g, h, i) 7→ φ(g)ω(h, i) + δ2γ(g, h, i) + δ2η(g, h, i)

is bounded, i.e. β ∈ C3
b (F,R).

We will see in Subsection 4.2.4 that β will be the bounded primitive for the

cup products studied in this chapter. Before we prove this theorem in Subsection

4.2.3, we will give an idea of the proof in Subsection 4.2.1. This will be inspired by

a construction of coboundaries to 3-cocycles which we recall in Subsection 4.2.2.

4.2.1 Idea of the proof of Theorems D and H

Theorem D states that [δ1φ ^ ω] = 0 in H4
b(F,R) for φ a ∆-decomposable quasi-

morphism and ω a ∆-continuous cocycle. Equivalently, there is a bounded primi-

tive of the map δ3τ ∈ C3(F,R), where τ is given by τ : (g, h, i) 7→ φ(g)ω(h, i) since

δ3τ = δ1φ ^ ω. Note that τ is a priori not an interesting function for bounded

cohomology: It is neither bounded nor is it a cocycle.

Recall that a map α ∈ C3(F,R) satisfies the cocycle condition if and only if

for all g, g′, h, i ∈ F we have that

δ3α(g, g′, h, i) = 0.

As H3(F,R) = 0, we know that there is some ε ∈ C2(F,R) such that δ2ε = α. We

will give a purely algebraic construction of such an ε in terms of α, provided α

satisfies certain weak conditions stated in Subsection 4.2.2, Equation 4.1.
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Observe that τ does not satisfy the cocycle condition for all g, g′, h, i ∈ F .

However, τ satisfies the cocycle condition in certain cases: Proposition 4.1.6 shows

that if g, g′ ∈ F satisfy that ∆(g · g′) = (∆(g)) · (∆(g′)) then

δ3τ(g, g′, h, i) = 0

for all h, i ∈ F . Following the techniques of Subsection 4.2.2 we will construct an

ε ∈ C2(F,R) such that δ2ε is boundedly close to τ . This is, such that the map

β = τ − δ2ε is bounded, i.e. β ∈ C3
b (F,R). This will imply that

δ3β = δ3τ − δ3δ2ε = δ1φ ^ ω

and hence the cup product has a bounded primitive and is trivial in bounded

cohomology.

4.2.2 Constructing 2-coboundaries from 3-cocycles

Let α ∈ C3(F,R) be a 3-cocycle i.e. a map such that δ3α = 0. We will show

how to construct a map ε ∈ C2(F,R) such that δ2ε = α. We emphasize that this

subsection just motivates the strategy of the proof of Theorem H. This theorem

will be proved in detail in Subsection 4.2.3 and the proof can be understood without

reading this subsection. In both subsections, the η and the ζ term will play

analogous rôle.

To simplify our calculations we will assume that α is a cocycle and moreover

satisfies

α(g, h, 1) = α(g, 1, h) = α(1, g, h) = α(g, g−1, h) = 0 for all g, h ∈ F . (4.1)

We note that alternating cochains in the sense of Subsection 4.10 of [Fri17] satisfy

(4.1) and that such maps may be used to fully compute H3(F,R).

Let α be as above and recall that the cocycle condition implies that for all

g, g′, h, i ∈ F we have that

δ3α(g, g′, h, i) = α(g′, h, i)−α(gg′, h, i) +α(g, g′h, i)−α(g, g′, hi) +α(g, g′, h) = 0.

(4.2)
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In a first step we see how α may be rewritten as a sum of elements of the form

α(x, g′, h′), where x is a letter and g′, h′ ∈ F . Define ζ ∈ C3(F,R) by setting

ζ : (g, g′, h) 7→
k∑
j=1

α(xj, xj+1 · · · xkg′, h)

where g = x1 · · · xk is the reduced word representing g. We claim that

Claim 4.2.1. Let α ∈ C3(F,R) be a cocycle satisfying (4.1). Then

α(g, h, i) = ζ(g, h, i)− ζ(g, 1, hi) + ζ(g, 1, h)

for all g, h, i ∈ F .

Proof. direct computation.

Now define η ∈ C2(F,R) by setting

η : (g, h) 7→ ζ(g, 1, h).

We then see that

α(g, h, i) + δ2η(g, h, i) = ζ(g, h, i) + ζ(h, 1, i)− ζ(gh, 1, i)

for all g, h, i ∈ F .

Claim 4.2.2. We have that

ζ(g, h, i) + ζ(h, 1, i)− ζ(gh, 1, i) = ζ(d, h, i) + ζ(d−1, dh, i)

for all g, h, i ∈ F , where d is the common 2-path of (g, h).

Proof. We will prove this by an explicit calculation. Observe that it is immediate

that if u, v ∈ F are such that uv is reduced then

ζ(uv, g′, h) = ζ(u, vg′, h) + ζ(v, g′, h). (4.3)

Now rewrite g = t−1
1 d and h = d−1t2, where d is the common 2-path of (g, h); see

Subsection 4.1.5. Then by (4.3) we see that

• ζ(g, h, i) = ζ(t−1
1 , dh, i) + ζ(d, h, i)
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• ζ(h, 1, i) = ζ(d−1, dh, i) + ζ(t2, 1, i)

• ζ(gh, 1, i) = ζ(t−1
1 , dh, i) + ζ(t2, 1, i)

Hence

ζ(g, h, i) + ζ(h, 1, i)− ζ(gh, 1, i) = ζ(d, h, i) + ζ(d−1, dh, i).

Claim 4.2.3. We have that ζ(g, h, i) + ζ(h, 1, i) − ζ(gh, 1, i) = 0 and hence that

α(g, h, i) = δ2ε for ε = −η.

Proof. Let d be the common 2-path of (g, h) as above. Moreover, suppose that

d1 · · · dl is the word representing d. By the previous claim, ζ(g, h, i) + ζ(h, 1, i)−
ζ(gh, 1, i) = ζ(d, h, i) + ζ(d−1, dh, i). We calculate

ζ(d, h, i) + ζ(d−1, dh, i) =
k∑
j=1

(
α(dj, dj+1 · · · dlh, i) + α(d−1

j , dj · · · dlh, i)
)
.

By evaluating δ3α(dj, d
−1
j , dj · · · dlh, i) using property (4.1) we have that

α(d−1
j , dj · · · dlh, i) + α(dj, dj+1 · · · dlh, i) = 0.

Together with Claim 4.2.2 the previous claim implies that α+δ2η = α−δ2ε = 0.

4.2.3 Proof of Theorem H

Let ∆ be a decomposition of F (Definition 4.1.1), let φ be a ∆-decomposable

quasimorphism (Definition 4.1.5) and let ω be a ∆-continuous cocycle (Definition

4.1.11). See the previous subsection for a brief discussion on the classical computa-

tions that inspired our construction here. Analogously to Claim 4.2.1, we will first

rewrite the function (g, h, i) 7→ φ(g)ω(h, i) as sum of terms φ(gj)ω(g′, h′) where gj

will be a piece of a fixed decomposition ∆. We will construct a map ε ∈ C2(F,R)

such that δ2ε is boundedly close to (g, h, i) 7→ φ(g)ω(h, i) by “treating” this func-

tion as a cocycle on the pieces of ∆ and then performing the calculations of Sub-

section 4.2.2. For this, define ζ ∈ C3(F,R) by setting

ζ(g, g′, h) :=
k∑
j=1

φ(gj)ω(gj+1 · · · gkg′, h)

68



for ∆(g) = (g1, . . . , gk). Analogous to Claim 4.2.1 we show:

Proposition 4.2.4. The term φ(g)ω(h, i) is equal to

ζ(g, h, i)− ζ(g, 1, hi) + ζ(g, 1, h)

for ζ ∈ C3(F,R) are as above.

Proof. Let ∆(g) = (g1, . . . , gk). Observe that for all j ∈ {1, . . . , k} by Proposition

4.1.6 we have that

0 = δ1φ(gj, gj+1 · · · gk)ω(h, i)

= φ(gj+1 · · · gk)ω(h, i)− φ(gjgj+1 · · · gk)ω(h, i) + φ(gj)ω(gj+1 · · · gkh, i) + . . .

−φ(gj)ω(gj+1 · · · gk, hi) + φ(gj)ω(gj+1 · · · gk, h)

Rearranging terms we see that

φ(gj · · · gk)ω(h, i)− φ(gj+1 · · · gk)ω(h, i)

= φ(gj)ω(gj+1 · · · gkh, i)− φ(gj)ω(gj+1 · · · gk, hi) + φ(gj)ω(gj+1 · · · gk, h).

Summing for j = 1, . . . , k − 1 over both sides

φ(g1 · · · gk)ω(h, i)− φ(gk)ω(h, i)

=
k−1∑
j=1

(
φ(gj)ω(gj+1 · · · gkh, i)− φ(gj)ω(gj+1 · · · gk, hi) + φ(gj)ω(gj+1 · · · gk, h)

)
.

As ω was supposed to be symmetric we have that ω(1, h) = ω(1, hi) = 0 and hence

φ(g)ω(h, i) = ζ(g, h, i)− ζ(g, 1, hi) + ζ(g, 1, h).

As in Subsection 4.2.2 define η ∈ C2(F,R) by setting

η : (g, h) 7→ ζ(g, 1, h)

and note that

δ2η(g, h, i) = η(h, i)− η(gh, i) + η(g, hi)− η(g, h)

= ζ(h, 1, i)− ζ(gh, 1, i) + ζ(g, 1, hi)− ζ(g, 1, h).
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Using Proposition 4.2.4 we see that

φ(g)ω(h, i) + δ2η(g, h, i)

is equal to

ζ(g, h, i) + ζ(h, 1, i)− ζ(gh, 1, i).

We will need the following properties of ζ.

Proposition 4.2.5. The function ζ defined as above has the following properties.

1. If u1, u2, v, w ∈ F are such that u1u2 is reduced then ζ(u1u2, w, v)−ζ(u1, u2w, v)−
ζ(u2, w, v) is uniformly bounded.

2. Let u1, u2, u3, u4 ∈ F be elements such that u1u2, u2u3 and u2u4 are reduced

and u3 and u4 do not start with the same letter. Then

ζ(u−1
1 , u1u2u3, u

−1
3 u4) + ζ(u1, u2u3, u

−1
3 u4)

is uniformly bounded.

3. Let u, v1, v2 ∈ F such that v1uv2 is reduced. Then

(a) ζ(u, u−1v−1
1 , v1uv2)− ζ(u, u−1, u) and

(b) ζ(u−1, v−1
1 , v1uv2)− ζ(u−1, 1, u)

are uniformly bounded.

Proof. In the proof of items (1)-(3) we will frequently use the following claim:

Claim 4.2.6. Let u, v1, v2 ∈ F be such that v1uv2 is reduced, let ∆(u) = (u1, . . . , un)

and let R be as in Definition 4.1.1. Then, there are sequences (v′1), (v′2) such that

1. for every 1 ≤ j ≤ n − R we have that ∆(uj · · ·unv2) = (uj, . . . , un−R) · (v′2)

and

2. for every R ≤ j ≤ n we have that ∆(v1 · u1 · · ·uj) = (v′1) · (uR, . . . , uj).
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Proof. For (1) let (c1), (c2), (c3) be the c-part of the ∆-triangle of (u, v2) and let

(r1), (r2), (r3) be the r-part of the ∆-triangle of (u, v2). Then, as uv2 is reduced we

see that (c2) = ∅. Hence ∆(u) = (c1)−1 · (r1) and ∆(uv) = (c1)−1 · (r3) · (c3). More-

over, observe that the length of (r1) is bounded by R. Hence all of (u1, . . . , un−R)

lie in (c1)−1. Comparing ∆(uv) with ∆(u) and using that decompositions are in-

fix closed (see Definition 4.1.1) yields (1). Item (2) can be deduced by the same

argument.

We first show (1) of Proposition 4.2.5. Let u1, u2 ∈ F be such that u1u2 is

reduced. Let the c-part of the ∆-triangle of (u1, u2) be (c1), (c2), (c3) and let the

r-part of the ∆-triangle of (u1, u2) be (r1), (r2), (r3). As u1u2 is reduced, (c2) has

to be empty. Hence

• ∆(u1) = ((c1)−1 · (r1)),

• ∆(u2) = ((r2) · (c3)) and

• ∆(u1u2) = ((c1)−1 · (r3)−1 · (c3)).

Suppose that (ci) = (ci,1, . . . ci,ni) and that (ri) = (ri,1, . . . ri,mi) for i = 1, 2, 3.

Then

ζ(u1u2, w, v) =

n1∑
j=1

φ(c−1
1,j)ω(c−1

1,j−1 · · · c−1
1,1r̄
−1
3 c̄3w, v) +

m3∑
j=1

φ(r−1
3,j )ω(r−1

3,j−1 · · · r−1
3,1 c̄3w, v) +

+

n3∑
j=1

φ(c3,j)ω(c3,j+1 · · · c3,n3w, v)

ζ(u1, u2w, v) =

n1∑
j=1

φ(c−1
1,j)ω(c−1

1,j−1 · · · c−1
1,1r̄1u2w, v) +

m1∑
j=1

φ(r1,j)ω(r1,j+1 · · · r1,n1u2w, v)

ζ(u2, w, v) =

m2∑
j=1

φ(r2,j)ω(r2,j+1 · · · r2,m2 c̄3w, v) +

n3∑
j=1

φ(c3,j)ω(c3,j+1 · · · c3,n3w, v)
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and hence

ζ(u1u2, w, v)− ζ(u1, u2w, v)− ζ(u2, w, v) =

m3∑
j=1

φ(r−1
3,j )ω(r−1

3,j−1 · · · r−1
3,1 c̄3w, v)

−
m1∑
j=1

φ(r1,j)ω(r1,j+1 · · · r1,n1u2w, v)

−
m2∑
j=1

φ(r2,j)ω(r2,j+1 · · · r2,m2 c̄3w, v)

which is indeed uniformly bounded, as m1,m2,m3 ≤ R (see Definition 4.1.1). Since

φ is ∆-decomposable, φ is uniformly bounded on pieces and as ω is a bounded

function.

To see (2), let u1, u2, u3, u4 be as in the proposition and suppose that ∆(u1) =

(u1,1, . . . , u1,n).

Claim 4.2.7. We have that the r-part of the ∆-triangles of (u1,j · · ·u1,nu2u3, u
−1
3 u4)

are the same for any j ≤ n − R and that the c-part of (u1,j · · ·u1,nu2u3, u
−1
3 u4) is

(c′1) · (u−1
1,n, · · · , u−1

1,j), (c
′
2), (c′3) for appropriate sequences (c′1), (c′2), (c′3). In particu-

lar there is a C ∈ N such that

N∆((u1,j · · ·u1,nu2u3, u
−1
3 u4), (u1,j+1 · · ·u1,nu2u3, u

−1
3 u4)) = j + C

for all j ≤ n−R.

Proof. It follows by comparing the sequences ∆(u1,j · · ·u1,nu2u3) and ∆(u1,j · · ·u1,nu2u4)

using Claim 4.2.6.

For (2) of Proposition 4.2.5, we calculate

ζ(u−1
1 , u1u2u3, u

−1
3 u4) + ζ(u1, u2u3, u

−1
3 u4) =

n∑
j=1

φ(u−1
1,j)ω(u1,j · · ·u1,nu2u3, u

−1
3 u4) . . .

+
n∑
j=1

φ(u1,j)ω(u1,j+1 · · ·u1,nu2u3, u
−1
3 u4)

=
n∑
j=1

φ(u1,j)
(
ω(u1,j+1 · · ·u1,nu2u3, u

−1
3 u4) . . .

−ω(u1,j · · ·u1,nu2u3, u
−1
3 u4)

)
.
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Hence we conclude that ζ(u−1
1 , u1u2u3, u

−1
3 u4)+ζ(u1, u2u3, u

−1
3 u4) is uniformly close

to

n−R∑
j=1

φ(u1,j)
(
ω(u1,j+1 · · ·u1,nu2u3, u

−1
3 u4)− ω(u1,j · · ·u1,nu2u3, u

−1
3 u4)

)
as R just depends on ∆ and φ is uniformly bounded on pieces. Now let (sj)j∈N be

the sequence in Definition 4.1.11. By Claim 4.2.7,

|ω(u1,j+1 · · ·u1,nu2u3, u
−1
3 u4)− ω(u1,j · · ·u1,nu2u3, u

−1
3 u4)| < sn+C .

and hence

n−R∑
j=1

|ω(u1,j+1 · · ·u1,nu2u3, u
−1
3 u4)− ω(u1,j · · ·u1,nu2u3, u

−1
3 u4)| < Sω,∆.

Putting those estimations together we see that ζ(u−1
1 , u1u2u3, u

−1
3 u4)+ζ(u1, u2u3, u

−1
3 u4)

is indeed uniformly bounded.

To see (3a), let u, v1, v2 be as in the proposition and suppose that ∆(u) =

(u1, . . . , un). By Claim 4.2.6, we see that for n−R ≤ j and R ≤ j the r-part of the

∆-triangle of (u−1
j · · ·u−1

1 v−1
1 , v1uv2) is trivial and that there are sequences (v′1), (v′2)

such that the c-part of the ∆-triangle is ∅, (u−1
j , . . . , u−1

1 ) · (v′1), (uj−1, . . . un) · (v′2).

Hence there are integers C1, C2 such that

N∆

(
(u−1

j · · ·u−1
1 v−1

1 , v1uv2), (u−1
j · · ·u−1

1 , u)
)
≥ min{j −R + C1, n− j −R + C2}

and hence

n−R∑
j=R

|ω(u−1
j · · ·u−1

1 v−1
1 , v1uv2)− (u−1

j · · ·u−1
1 , u)| ≤ 2Sω,∆.

Finally, observe that

ζ(u, u−1v−1
1 , v1uv2)−ζ(u, u−1, u) =

n∑
j=1

φ(uj)
(
ω(u−1

j · · ·u−1
1 v−1

1 , v1uv2)−(u−1
j · · ·u−1

1 , u)
)

and is hence uniformly close to

n−R∑
j=R

φ(uj)
(
ω(u−1

j · · ·u−1
1 v−1

1 , v1uv2)− (u−1
j · · ·u−1

1 , u)
)
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With the above estimation we hence see that ζ(u, u−1v−1
1 , v1uv2)−ζ(u, u−1, u) may

be uniformly bounded. The proof of item (3b) is analogous to the proof for item

(3a).

Analogously to Claim 4.2.2 we show:

Proposition 4.2.8. The term φ(g)ω(h, i)+δ2η(g, h, i) is uniformly close to ζ(d, h, i)+

ζ(d−1, dh, i) where d is the common 2-path of (g, h).

Proof. Let g, h, i ∈ F . Furthermore write g = t−1
1 d and h = d−1t2 where d is the

common 2-piece of (g, h). We know that φ(g)ω(h, i) + δ2η(g, h, i) is equal to

ζ(g, h, i) + ζ(h, 1, i)− ζ(gh, 1, i).

Using Proposition 4.2.5, (1) we see that

• ζ(g, h, i) is uniformly close to ζ(t−1
1 , t2, i) + ζ(d, d−1t2, i),

• ζ(h, 1, i) is uniformly close to ζ(d−1, t2, i) + ζ(t2, 1, i) and

• ζ(gh, 1, i) is uniformly close to ζ(t−1
1 , t2, i) + ζ(t2, 1, i).

Combining these estimates we see that φ(g)ω(h, i) + δ2η(g, h, i) is uniformly close

to ζ(d, d−1t2, i) + ζ(d−1, t2, i).

Proposition 4.2.9. We have that φ(g)ω(h, i) + δ2η(g, h, i) is uniformly close to

ζ(c, c−1, c) + ζ(c−1, 1, c)

where c is the common 3-path of (g, h, i).

Proof. We consider the three different cases described in Subsection 4.1.5 of how

three elements g, h, i ∈ F can be aligned.

Case A : There are elements t1, . . . , t5 such that g = t1t2, h = t−1
2 t3t4, i = t−1

4 t5 as

reduced words. Then the common 2-path of (g, h) is t2. Hence φ(g)ω(h, i) +

δ2η(g, h, i) is uniformly close to

ζ(t2, t
−1
2 t3t4, t

−1
4 t5) + ζ(t−1

2 , t3t4, t
−1
4 t5).

Using Proposition 4.2.5, (2) for u1 = t−1
2 , u2 = t3, u3 = t4, u4 = t5 we see that

in this case φ(g)ω(h, i) + δ2η(g, h, i) is uniformly bounded.
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Case B : There are elements t1, . . . , t5 such that g = t1t2t3, h = t−1
3 t4, i =

t−1
4 t−1

2 t5 as reduced words. Then the common 2-path of (g, h) is t3. Hence

φ(g)ω(h, i) + δ2η(g, h, i) is uniformly close to

ζ(t3, t
−1
3 t4, t

−1
4 t−1

2 t5) + ζ(t−1
3 , t4, t

−1
4 t−1

2 t5).

Using Proposition 4.2.5, (2) for u1 = t−1
3 , u2 = ∅, u3 = t4, u4 = t−1

2 t5 we see

that in this case, φ(g)ω(h, i) + δ2η(g, h, i) is uniformly bounded.

Case C : There are elements t1, . . . , t4 and c such that g = t−1
1 ct2, h = t−1

2 c−1t3,

i = t−1
3 ct4 as reduced words. Then the common 2-path of (g, h) is ct2. Hence

φ(g)ω(h, i) + δ2η(g, h, i) is uniformly close to

ζ(ct2, t
−1
2 c−1t3, t

−1
3 ct4) + ζ(t−1

2 c−1, t3, t
−1
3 ct4)

Using Proposition 4.2.5 (1) we see that

• ζ(ct2, t
−1
2 c−1t3, t

−1
3 ct4) is uniformly close to ζ(c, c−1t3, t

−1
3 ct4)+ζ(t2, t

−1
2 c−1t3, t

−1
3 ct4)

and

• ζ(t−1
2 c−1, t3, t

−1
3 ct4) is uniformly close to ζ(t−1

2 , c−1t3, t
−1
3 ct4)+ζ(c−1, t3, t

−1
3 ct4).

Hence φ(g)ω(h, i) + δ2η(g, h, i) is uniformly close to

ζ(c, c−1t3, t
−1
3 ct4)+ζ(c−1, t3, t

−1
3 ct4)+

(
ζ(t2, t

−1
2 c−1t3, t

−1
3 ct4)+ζ(t−1

2 , c−1t3, t
−1
3 ct4)

)
.

Using Proposition 4.2.5 (2) for u1 = t−1
2 , u2 = c−1, u3 = t3, u4 = ct4 we

see that
(
ζ(t2, t

−1
2 c−1t3, t

−1
3 ct4) + ζ(t−1

2 , c−1t3, t
−1
3 ct4)

)
is uniformly bounded.

Using item (3a) of the same proposition for u = c, v1 = t−1
3 , v2 = t4 we

see that ζ(c, c−1t3, t
−1
3 ct4) is uniformly close to ζ(c, c−1, c) and by item (3b)

again for u = c, v1 = t−1
3 , v2 = t4 we see that ζ(c−1, t3, t

−1
3 ct4) is uniformly

close to ζ(c−1, 1, c). Putting the above estimations together we see that

φ(g)ω(h, i) + δ2η(g, h, i) is uniformly close to ζ(c, c−1, c) + ζ(c−1, 1, c).

Proposition 4.2.10. The map θ : F → R defined by setting

θ : g 7→ ζ(g, g−1, g) + ζ(g−1, 1, g)

is a symmetric quasimorphism.
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Proof. We will first show the following claim:

Claim 4.2.11. If v, w ∈ F are such that vw is reduced then θ(vw) is uniformly

close to θ(v) + θ(w).

Proof. Note that θ(vw) = ζ(vw,w−1v−1, vw) + ζ(w−1v−1, 1, vw). Using Proposi-

tion 4.2.5 (1) we see that θ(vw) is uniformly close to

ζ(w,w−1v−1, vw) + ζ(v, v−1, vw) + ζ(w−1, v−1, vw) + ζ(v−1, 1, vw).

By item (3) of the same proposition we see that

• ζ(w,w−1v−1, vw) is uniformly close to ζ(w,w−1, w), for u = w, v1 = v, v2 = ∅,

• ζ(v, v−1, vw) is uniformly close to ζ(v, v−1, v), for u = v, v1 = ∅, v2 = w,

• ζ(w−1, v−1, vw) is uniformly close to ζ(w−1, 1, w) for u = w, v1 = v, v2 = ∅
and

• ζ(v−1, 1, vw) is uniformly close ζ(v−1, 1, v) for u = v, v1 = ∅, v2 = w.

Putting things together we see that θ(vw) is uniformly close to(
ζ(v, v−1, v) + ζ(v−1, 1, v)

)
+
(
ζ(w,w−1, w) + ζ(w−1, 1, w)

)
= θ(v) + θ(w).

Claim 4.2.12. The map θ : F → R is symmetric i.e. θ(g) = −θ(g−1) for all

g ∈ F .

Proof. We first need two easy properties of ω. Note that ω is induced by a sym-

metric quasimorphism, say ω = δ1ρ for some quasimorphism ρ : F → R. We have

that for all u, v ∈ F ,

ω(u, u−1v) = ρ(u)+ρ(u−1v)−ρ(v) = −ρ(u−1)−ρ(v)+ρ(u−1v) = −ω(u−1, v). (4.4)

and

ω(u, v) = ρ(u) + ρ(v)− ρ(uv) = −ρ(u−1)− ρ(v−1)− ρ(v−1u−1) = −ω(v−1, u−1).

(4.5)

Fix g ∈ F such that ∆(g) = (g1, . . . , gk). Recall that in this case ∆(g−1) =

(g−1
k , . . . , g−1

1 ). Then
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• ζ(g, g−1, g) =
∑k

j=1 φ(gj)ω(g−1
j · · · g−1

1 , g) =
∑k

j=1 φ(gj)ω(g1 · · · gj, gj+1 · · · gk)
using (4.4) for u = g−1

j · · · g−1
1 and v = gj+1 · · · gk. Similarly we see that

• ζ(g−1, 1, g) =
∑k

j=1 φ(g−1
j )ω(g1 · · · gj−1, gj · · · gk) = −

∑k
j=1 φ(gj)ω(g1 · · · gj−1, gj · · · gk)

using that φ is symmetric,

• ζ(g−1, g, g−1) =
∑k

j=1 φ(g−1
j )ω(g−1

k · · · g
−1
j , g−1

j−1 · · · g−1
1 ) =

∑k
j=1 φ(gj)ω(g1 · · · gj−1, gj · · · gk)

where we used that φ is symmetric and (4.5) and

• ζ(g, 1, g−1) =
∑k

j=1 φ(gj)ω(g−1
k · · · g

−1
j , g−1

j−1 · · · g−1
1 ) = −

∑k
j=1 φ(gj)ω(g1 · · · gj, gj+1 · · · gk),

where we used once more (4.5).

We hence see that θ(g) + θ(g−1) = ζ(g, g−1, g) + ζ(g−1, 1, g) + ζ(g−1, g, g−1) +

ζ(g, 1, g−1) = 0 and θ is symmetric.

We can now prove that θ is a quasimorphism. Let g, h ∈ F and suppose that

d is the common 2-path of (g, h) i.e. g = t−1
1 d, h = d−1t2 as reduced words for

some appropriate t1, t2 ∈ F . Then, by Claim 4.2.11 we have that θ(g) + θ(h) is

uniformly close to

θ(t−1
1 ) + θ(d) + θ(d−1) + θ(t2)

and by Claim 4.2.12, θ(g) + θ(h) is uniformly close to θ(t−1
1 ) + θ(t2). By Claim

4.2.11 again, θ(t−1
1 )+θ(t2) is uniformly close to θ(t−1

1 t2) = θ(gh). Hence θ(g)+θ(h)

is uniformly close to θ(gh) and hence θ is a quasimorphism.

We will need the following Lemma:

Lemma 4.2.13. Suppose ρ : F → R is a symmetric quasimorphism. Define

κ ∈ C2(F,R) by κ(g, h) = ρ(d) where d is the common 2-path of (g, h). Then

δ2κ(g, h, i) is uniformly close to −2ρ(c) where c is the common 3-path of (g, h, i).

Proof. We have to evaluate

δ2κ(g, h, i) = κ(h, i)− κ(gh, i) + κ(g, hi)− κ(g, h).

For what follows we will use the different cases of how g, h and i can be aligned

in the Cayley graph of F as seen in Figure 4.3.
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1. (see Figure 4.3a): In this case there are elements t1, . . . , t5 such that g = t1t2,

h = t−1
2 t3t4, i = t−1

4 t5 as reduced words. It follows that

• t4 is the common 2-path of (h, i),

• t4 is the common 2-path of (gh, i),

• t2 is the common 2-path of (g, hi) and

• t2 is the common 2-path of (g, h).

Hence δ2κ(g, h, i) = ρ(t4)− ρ(t4) + ρ(t2)− ρ(t2) = 0.

2. (see Figure 4.3b): In this case there are elements t1, . . . , t5 such that g =

t1t2t3, h = t−1
3 t4, i = t−1

4 t−1
2 t5 as reduced words. It follows that

• t4 is the common 2-path of (h, i),

• t4t2 is the common 2-path of (gh, i),

• t2t3 is the common 2-path of (g, hi) and

• t3 is the common 2-path of (g, h).

Hence δ2κ(g, h, i) = ρ(t4)−ρ(t4t2)+ρ(t2t3)−ρ(t3) which is uniformly bounded

as ρ is a quasimorphism.

3. (see Figure 4.3c): In this case there are elements t1, . . . , t4 and c such that

g = t−1
1 ct2, h = t−1

2 c−1t3, i = t−1
3 ct4 as reduced words. It follows that

• c−1t3 is the common 2-path of (h, i),

• t3 is the common 2-path of (gh, i),

• t2 is the common 2-path of (g, hi) and

• ct2 is the common 2-path of (g, h).

Hence δ2κ(g, h, i) = ρ(c−1t3)− ρ(t3) + ρ(t2)− ρ(ct2) which is uniformly close

to −2ρ(c). This shows Lemma 4.2.13.

78



Finally, we can prove Theorem H. By Proposition 4.2.9, φ(g)ω(h, i)+δ2η(g, h, i)

is uniformly close to ζ(c, c−1, c) + ζ(c−1, 1, c) = θ(c) where c is the common 3-path

of (g, h, i) and θ : F → R is like in Proposition 4.2.10. Define γ ∈ C2(F,R) via

γ(g, h) = θ(d)/2 where d is the common 2-path of (g, h). Observe that ρ : g 7→
θ(g)/2 is a symmetric quasimorphism by Proposition 4.2.10. Using Lemma 4.2.13,

we see that δ2γ(g, h, i) is uniformly close to −θ(c) where c is the common 3-path

of (g, h, i). Hence φ(g)ω(h, i) + δ2η(g, h, i) + δ2γ(g, h, i) is uniformly bounded.

4.2.4 Proof of Theorems C and D

Here we will prove Theorems C and D by providing an explicit bounded primitive

for the respective cup products.

Theorem D. Let ∆ be a decomposition of F , let φ be a ∆-decomposable quasi-

morphism and let ψ be ∆-continuous. Then [δ1φ] ^ [δ1ψ] ∈ H4
b(F,R) is trivial.

The bounded primitive is given by β, as in Theorem H for ω = δ1ψ.

Proof. By Theorem H we know that β defined by setting β : (g, h, i) 7→ φ(g)δ1ψ(h, i)+

δ2η(g, h, i) + δ2γ(g, h, i) is bounded, as δ1ψ(h, i) is a symmetric ∆-continuous co-

cycle. Then we calculate

δ3β(g, h, i, j) = δ1φ(g, h) ^ δ1ψ(i, j).

Hence β is a bounded primitive for the cup product.

Finally, we can prove Theorem C.

Theorem C. Let φ, ψ : F → R be two quasimorphisms on a non-abelian free group

F where each of φ and ψ is either Brooks counting quasimorphisms on a non self-

overlapping word or quasimorphisms in the sense of Rolli. Then [δ1φ] ^ [δ1ψ] ∈
H4
b(F,R) is trivial.

Proof. First suppose that both φ and ψ are Brooks quasimorphisms. Suppose that

φ is counting the non-overlapping word w ∈ F . Let ∆w be the decomposition de-

scribed in Example 4.1.3. By Example 2.2.7, we have that φ is ∆w-decomposable.

Moreover, by Proposition 4.1.12, ψ is ∆w-continuous. We conclude by Theorem

D.
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If not both φ and ψ are Brooks quasimorphisms then assume without loss

of generality that φ is a quasimorphism in the sense of Rolli and ψ is either a

Brooks quasimorphism or a quasimorphism in the sense of Rolli. Let ∆rolli be the

decomposition described in Example 4.1.4. Note that φ is ∆rolli-decomposable.

If ψ is a quasimorphism in the sense of Rolli, then ψ is ∆rolli-decomposable and

hence ∆rolli-continuous by Proposition 4.1.12. If ψ is a Brooks quasimorphism

then by the same proposition we see that ψ is also ∆rolli-continuous. Again we

may conclude by applying Theorem D.
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Chapter 5

Gaps in scl for RAAGs

It is a phenomenon that many “negatively curved” groups have a gap in stable

commutator length, i.e. there is a constant C > 0 such that every element g ∈ G′

either satisfies scl(g) = 0 or satisfies scl(g) ≥ C; see Subsection 2.3.2.

Some groups even satisfy the stronger property that in addition the only ele-

ment which satisfies scl(g) = 0 is the identity. Such a gap is interesting since it

is inherited by subgroups. Recall from Subsection 2.3.2 that both such gaps are

necessarily bounded above by 1/2. The aim of this chapter is to prove that this

gap is indeed exactly 1/2 for certain amalgamated free products and right-angled

Artin groups.

A common way of establishing gaps in scl is by constructing quasimorphisms

and using Bavard’s Duality Theorem (see Theorem 2.3.2 and [Bav91]): For an

element g ∈ G′,

scl(g) = sup
φ̄∈Q(G)

φ̄(g)

2D(φ̄)

where Q(G) is the space of homogeneous quasimorphisms and D(φ̄) is the defect

of φ̄; see Subsection 2.2.5 for the definitions and the precise statement.

In the first part of this chapter, we will construct a family of extremal quasimor-

phisms on non-abelian free groups. Let F2 = 〈a, b〉 be the free group on generators

a and b and let w ∈ F2 be such that it does not conjugate into 〈a〉 or 〈b〉. Then we

will construct a homogeneous quasimorphism φ̄ such that φ̄(w) ≥ 1 and D(φ̄) ≤ 1.

This realises the well-known gap of 1/2 in the case of non-abelian free groups. Our
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approach is as follows: instead of constructing more complicated quasimorphisms

φ̄ we first “simplify” the element w.

This simplification is formalised by functions Φ: G → A ⊂ F2, called letter-

quasimorphisms ; see Definition 5.2.1. Here A denotes the set of alternating words

in F2 = 〈a, b〉 with the generators a and b. These are words where each letter

alternates between {a, a−1} and {b, b−1}. Letter-quasimorphisms are a special

case of quasimorphisms between arbitrary groups defined by Hartnick–Schweitzer

[HS16]. After this simplification, the extremal quasimorphisms on G are obtained

by pulling back most basic quasimorphisms F2 → R via such letter-quasimorphisms

G→ A ⊂ F2. We further deduce that such quasimorphisms are induced by a circle

action ρ : G→ Homeo+(S1) by examining the defect and using Theorem 2.2.4 due

to Ghys; see also [Ghy87]. We show:

Theorem E. Let G be a group, g ∈ G and suppose that there is a letter-quasimorphism

Φ: G → A such that Φ(g) is non-trivial and Φ(gn) = Φ(g)n for all n ∈ N Then

there is an explicit homogeneous quasimorphism φ̄ : G→ R such that φ̄(g) ≥ 1 and

D(φ̄) ≤ 1.

If G is countable then there is an action ρ : G→ Homeo+(S1) such that [δ1φ̄] =

ρ∗euR
b ∈ H2

b(G,R), for euR
b the real bounded Euler class.

By Bavard’s Duality Theorem it is immediate that if such an element g addi-

tionally lies in G′, then scl(g) ≥ 1/2. We state Theorem E separately as it may

also be applied in other cases than the ones presented in this chapter; see Remark

5.4.3. Many groups G have the property that for any element g ∈ G′ there is a

letter-quasimorphism Φg : G → A such that Φg(g
n) = Φg(g)n where Φg(g) ∈ A is

non-trivial. We will see that residually free groups and right-angled Artin groups

have this property. Note the similarities of this property with being residually free;

see Remark 5.2.8.

In the second part of this chapter we apply Theorem E to amalgamated free

products using left-orders. A subgroup H < G is called left-relatively convex if

there is an order on the left cosets G/H which is invariant under left multiplication

by G. We will construct letter-quasimorphisms G→ A ⊂ F2 using the sign of these

orders. We deduce:
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Theorem F. Let A,B,C be groups, κA : C ↪→ A and κB : C ↪→ B injections

and suppose both κA(C) < A and κB(C) < B are left-relatively convex. If g ∈
A ?C B does not conjugate into one of the factors then there is a homogeneous

quasimorphism φ̄ : A?CB → R such that φ̄(g) ≥ 1 and D(φ̄) ≤ 1. If G is countable

then there is an action ρ : G → Homeo+(S1) such that [δ1φ̄] = ρ∗euR
b ∈ H2

b(G,R),

for euR
b the real bounded Euler class.

It is possible to generalise Theorem F to graphs of groups; see Remark 5.4.3.

Again by Bavard’s Duality Theorem we infer that any such g which also lies in the

commutator subgroup satisfies scl(g) ≥ 1/2. We apply this to right-angled Artin

groups using the work of [ADS15]. This way we prove:

Theorem G. Every non-trivial element g ∈ G′ in the commutator subgroup of a

right-angled Artin group G satisfies scl(g) ≥ 1/2. This bound is sharp.

This is an improvement of the bound previously found in [FFT16] and [FST17]

who deduced a general bound of 1/24 and a bound of 1/20 if the right-angled

Artin group is two dimensional. Every subgroup of a right-angled Artin group will

inherit this bound. Such groups are now known to be an extremely rich class, fol-

lowing the theory of special cube complexes. See [Wis09], [HW08], [Ago13], [Bri13]

and [Bri17]. Stable commutator length may serve as an invariant to distinguish

virtually special from special cube complexes.

Properties of the constructed quasimorphisms

We collect some properties of the quasimorphisms constructed in this chapter.

• The quasimorphisms are induced by circle actions ρ : G→ Homeo+(S1) even

though we do not construct the explicit action ρ. In particular, for every

e 6= g ∈ F ′ where F is a non-abelian free group and scl(g) = 1/2 there is an

extremal quasimorphism φ̄ : F → R induced by a circle action. It is unknown

if for an arbitrary element g ∈ F ′ there is an action of F on the circle such

that the induced quasimorphism is extremal with respect to g.
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• There are relatively few quasimorphisms needed to obtain the 1/2 bound in

Theorem G. Let G be a right-angled Artin group. Analysis of the construc-

tions show that there is a sequence SN ⊂ Q(G) of nested sets of homogeneous

quasimorphisms such that for every non-trivial cyclically reduced element g

of length less than N there is some φ̄ ∈ SN such that φ̄(g) ≥ 1 and D(φ̄) ≤ 1.

We see that |SN | = O(N) and the rate-constant only depends on the number

of generators of the right-angled Artin group.

• We obtain gap results even for elements which are not in the commutator

subgroup. This suggests that it may be interesting to use Bavard’s Dualtiy

Theorem as a generalisation of stable commutator length to an invariant of

general group elements g ∈ G. That is to study the supremum of φ̄(g)/2

where φ̄ ranges over all homogeneous quasimorphisms with D(φ̄) = 1 which

vanish or are bounded on a fixed generating set. In [CW11] the authors

studied this supremum over all homogeneous quasimorphisms induced by

circle actions. They could prove that this supremum has certain qualitative

similarities to the experimental values observed for scl. This includes the

experimental phenomenon that values with low denominators appear more

frequently in scl.

Organisation

In Section 5.1 we introduce letter-thin triples which are a special type of triples

(x1, x2, x3) of alternating elements x1, x2, x3 ∈ A. These will be crucial in estimat-

ing the defect of the quasimorphisms constructed in this chapter. We will define

maps α, β : A → A, which we show to respect letter-thin triples in Lemma 5.1.14.

In Section 5.2 we define and study letter-quasimorphisms which are maps from

arbitrary groups to alternating words of the free group. We deduce Theorem E

which serves as a criterion for scl-gaps of 1/2 using these letter-quasimorphisms.

Section 5.3 recalls some results of [ADS15] on left relatively convex subgroups and

orders on groups. Using the sign of these orders we are able to deduce 1/2 gaps

for amalgamated free products in Section 5.4; see Theorem F. We show the 1/2

gaps for right-angled Artin groups in Section 5.5; see Theorem G.
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5.1 Letter-Thin Triples and the Maps α and β

The set of alternating words A ⊂ F2 is the set of all words in the letters a and b

where the letters alternate between {a, a−1} and {b, b−1}. For example, aba−1b−1

is an alternating word but abba−1b−1b−1 is not. We will define maps α, β : A → A
and develop their basic properties in Subsection 5.1.1. We also define a version

of these maps on Ā0, which are conjugacy classes of even-length words of A to

understand how α, β behave on powers; see Proposition 5.1.9. In Subsection 5.1.2

we define certain triples (x1, x2, x3) where x1, x2, x3 ∈ A called letter-thin triples.

We think of them as the sides of (thin) triangles; see Figure 5.2. Note that such

triples are not triangles in the usual sense, i.e. the sides x1, x2, x3 do not correspond

to the geodesics between three points in some metric space like a Cayley graph.

Letter-thin triples will be crucial in estimating the defect of the quasimorphisms we

construct in this paper. We will see that α and β map letter-thin triples to letter-

thin triples in Lemma 5.1.14, which is the main technical result of this paper. In

Subsection 5.1.3 we see that basic Brooks quasimorphisms and homomorphisms

behave well on letter-thin triples. We usually prove the properties we state for

α, β just for α and note that all properties may be deduced analogously for β by

interchanging a and b; see Proposition 5.1.4, (2).

5.1.1 The Maps α and β, Definition and Properties

We will describe two maps α, β : A → A sending alternating words to alternating

words. Define S+
a ,S−a ⊂ A as

S+
a = {ay1a · · · ayla | yi ∈ {b, b−1}, l ∈ N}

S−a = {a−1y1a
−1 · · · a−1yla

−1 | yi ∈ {b, b−1}, l ∈ N}

that is, S+
a is the set of alternating words which start and end in a and don’t

contain the letter a−1 and S−a is the set of alternating words which start and end

in a−1 and don’t contain the letter a. Note that we assume 0 ∈ N, i.e. a ∈ S+
a and

a−1 ∈ S−a .
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Analogously we define the sets S+
b ⊂ A and S−b ⊂ A as

S+
b = {bx1b · · · bxlb | xi ∈ {a, a−1}, l ∈ N}

S−b = {b−1x1b
−1 · · · b−1xlb

−1 | xi ∈ {a, a−1}, l ∈ N}

and observe that b ∈ S+
b and b−1 ∈ S−b .

We will decompose arbitrary words w ∈ A as a unique product of elements in

{b, b−1} and S+
a ∪ S−a :

Proposition 5.1.1. Let w ∈ A be an alternating word. Then there are y0, . . . , yl
and s1, . . . , sl such that

w = y0s1y1s2 · · · yl−1slyl

where yi ∈ {b, b−1} except that y0 and/or yl may be empty and si ∈ S+
a ∪ S−a .

Moreover, si alternates between S+
a and S−a , i.e. there is no i ∈ {1, . . . , l−1} such

that si, si+1 ∈ S+
a or si, si+1 ∈ S−a . This expression is unique.

We will call this way of writing w the a-decomposition of w. Analogously, we

may also write w ∈ A as

w = x0t1x1t2 · · · xl−1tlxl

(possibly with a different l), where xi ∈ {a, a−1} except that x0 and / or xl may

be empty and ti ∈ S+
b ∪ S−b where ti alternate between S+

b and S−b . We will call

this way of writing w the b-decomposition of w.

Proof. (of Proposition 5.1.1) Let w ∈ A be an alternating word. Since a ∈ S+
a and

a−1 ∈ S−a , we may always find some si ∈ S+
a ∪ S−a and some yi ∈ {b, b−1} such

that

w = y0s1y1s2 · · · yn−1snyn

with possibly yn and / or y0 empty.

Now let m be the minimal n of all such products representing w i.e.

w = y0s1y1s2 · · · ym−1smym.

Suppose there is an i ∈ {1, . . . ,m−1} such that si, si+1 ∈ S+
a (resp. si, si+1 ∈ S−a ).

Set s′ = siyisi+1 and note that s′ ∈ S+
a (resp. s′ ∈ S−a ). Then

w = y0s1y1s2 · · · yi−1s
′yi+1 · · · ym−1smym
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which would contradict the minimality of m. Hence all si alternate between S+
a

and S−a . By comparing two such expressions we see that such an expression is

further unique.

Definition 5.1.2. Let w ∈ A and let w = y0s1 · · · yl−1slyl be the a-decomposition

of w. Then α : A → A is defined via

α : w 7→ y0x1y1x2 · · · yl−1xlyl

with xi = a if si ∈ S+
a and xi = a−1 if si ∈ S−a .

Analogously suppose that w = x0t1x1t2 · · · xl−1tlxl is the b-decomposition of w,

with l possibly different from above. We define the map β : A → A via

β : w 7→ x0y1x1y2 · · · xl−1ylxl

with yi = b if ti ∈ S+
b and yi = b−1 if ti ∈ S−b .

Example 5.1.3. Let w = bab−1abab−1a−1ba−1baba−1. Then the a-decomposition

of w is

w = bs1b
−1s2bs3bs4

where s1 = ab−1aba ∈ S+
a , s2 = a−1ba−1 ∈ S−a , s3 = a ∈ S+

a and s4 = a−1 ∈ S+
a .

Hence

α(w) = bab−1a−1baba−1.

Observe that then α(α(w)) = α(w). The b-decomposition of α(w) is

α(w) = t1at2a
−1t3a

−1

where t1 = b ∈ S+
b , t2 = b−1 ∈ S−b and t3 = bab ∈ S+

b . Hence

β(α(w)) = bab−1a−1ba−1

and similarly, we may see that α(β(α(w))) = bab−1a−1 = [b, a]. Then both

α([b, a]) = [b, a] and β([b, a]) = [b, a]. We will formalise and use this behaviour

later; see Proposition 5.1.4 and Proposition 5.1.8.
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The images of α and β are obviously contained in the set of alternating words.

Moreover, as the si in the previous definition all alternate between S+
a and S−a ,

none of the consecutive xi have the same sign in the image of α and no consecutive

yi have the same sign in the image of β.

Proposition 5.1.4. The maps α, β : A → A have the following properties:

1. For every w ∈ A, α(w−1) = α(w)−1 and β(w−1) = β(w)−1

2. ψ ◦ α = β ◦ ψ and ψ ◦ β = α ◦ ψ, where ψ : F2 → F2 is the automorphism

defined via ψ : a 7→ b, b 7→ a.

3. For any w ∈ A, α(α(w)) = α(w). Moreover, |α(w)| ≤ |w| with equality if

and only if α(w) = w. The analogous statement holds for β.

4. Let v1xv2 be an alternating word with v1, v2 ∈ A and x ∈ {a, a−1}. Then

α(v1xv2) is equal in F2 to the element represented by the non-reduced word

α(v1x)x−1α(xv2). The analogous statement holds for β.

Proof. To see (1), note that if w = y0s1y1 · · · yl−1slyl is the a-decomposition of w,

then

y−1
l s−1

l y−1
l−1 · · · y

−1
1 s−1

1 y−1
0

is the a-decomposition of w−1. As s−1
i ∈ S+

a if and only if si ∈ S−a and s−1
i ∈ S−a

if and only if si ∈ S+
a we can conclude that α(w−1) = α(w)−1. The analogous

argument holds for β.

Point (2) is evident from the symmetric way α and β have been defined. To

see (3), note that α replaces each of the subwords si by letters a or a−1. These

have size strictly less than |si| unless si is the letter a or a−1 already. This shows

|α(w)| ≤ |w| with equality only if α(w) = w and it also shows that α ◦ α = α.

For (4) suppose that the a-decomposition of v1x is y1
0s

1
1y

1
1 · · · y1

l1−1s
1
l1

and the

a-decomposition of xv2 is s2
1y

2
1 · · · y1

l1−1s
2
l2
y2
l2

. Both, s1
l1

and s2
1 lie in the same set S+

a

or S−a depending if x = a or x = a−1. Without loss of generality assume that x = a.

The a-decomposition of v1xv2 may be seen to be y1
0s

1
1y

1
1 · · · y1

l1−1sy
2
1 · · · y2

l2−1s
2
l2
y2
l2

where s ∈ S+
a is equal to s1

l1
a−1s2

1 in F2. Hence α(v1a) = y1
0x

1
1y

1
1 · · · y1

l1−1a, α(av2) =

ay2
1 · · · y2

l2−1x
2
l2
y2
l2

and

α(v1xv2) = y1
0x

1
1y

1
1 · · · y1

l1−1ay
2
1 · · · y2

l2−1x
2
l2
y2
l2
.

88



Comparing terms finishes the proposition.

To study how the maps α, β : A → A behave on powers of elements we need

to define a version of them on conjugacy classes. Let Ā0 be the set conjugacy

classes of even length alternating words. Note that then necessarily every two

representatives w1, w2 ∈ A of the same conjugacy class in Ā0 are equal up to

cyclic permutation of the letters. This is, there are elements v1, v2 ∈ A such that

w1 = v1v2 and w2 = v2v1 as reduced words. Hence every representative v ∈ A of

an element in Ā0 is automatically reduced.

Remark 5.1.5. Every reduced representative w ∈ A of a class in Ā0 has the same

length. Every homogeneous quasimorphism φ̄ : F2 → R depends only on conjugacy

classes and hence induces a well-defined map φ̄ : Ā0 → R. We say that an element

[w] ∈ Ā0 lies in the commutator subgroup if one (and hence any) representative w

of [w] lies in the commutator subgroup of F2.

Definition 5.1.6. Define the map ᾱ : Ā0 → Ā0 as follows: Let [w] ∈ Ā0. If

[w] = e set ᾱ([w]) = e. Else choose a representative w ∈ A of [w] that starts with

a power of a and, as w has even length, ends in a power of b. Suppose that w

starts with the letter x ∈ {a, a−1} and write w = xw′ for w′ ∈ A such that xw′ is

reduced. Then define ᾱ : Ā0 → Ā0 via

ᾱ : [w] 7→ [α(xw′x)x−1] ∈ Ā0.

Define β̄ : Ā0 → Ā0 analogously: For every element [w] ∈ Ā0 choose a represen-

tative w ∈ A which starts with the letter y ∈ {b, b−1} and write w = yw′. Then

define β̄ : Ā0 → Ā0 via

β̄ : [w] 7→ [β(yw′y)y−1] ∈ Ā0.

To see that ᾱ, β̄ : Ā0 → Ā0 are well-defined, suppose that w1, w2 ∈ A are both

even alternating words which start in a power of a and both represent the same

element [w1] = [w2] ∈ Ā0. Let x1, x2 ∈ {a, a−1} be the first letters of w1 and w2.

Then there are elements v1, v2 ∈ A such that w1 = x1v1x2v2 as a reduced word

and w2 = x2v2x1v1. Then, by (3) of Proposition 5.1.4,

α(w1x1)x−1
1 = α(x1v1x2v2x1)x−1

1 = α(x1v1x2)x−1
2 α(x2v2x1)x−1

1

α(w2x2)x−1
2 = α(x2v2x1v1x2)x−1

2 = α(x2v1x1)x−1
1 α(x1v1x2)x−1

2
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(a)

(b)

Figure 5.1: Visualizing ᾱ: Conjugacy classes [w] correspond to cyclic labellings of
a circle. One may define an a-decomposition and ᾱ on such labels except when
[w] does not contain a or a−1 as a subword. See Example 5.1.7

which are conjugate in F2 and so [α(w1x1)x−1
1 ] = [α(w2x2)x−1

2 ]. This shows that ᾱ

is well defined and analogously that β̄ is well defined.

The definition of ᾱ given above is useful for performing calculations. However,

there is a more geometric way to think about ᾱ and β̄ analogous to the definition of

α and β. A common way to depict conjugacy classes in the free group is via labels

on a circle: Let w = z1 · · · zn ∈ F2 be a cyclically reduced word in the letters zi.

Then w labels a circle by cyclically labelling the sides of the circle counterclockwise

by z1, z2, . . . , zn so that zn is next to z1 on the circle. Two cyclically reduced words

w ∈ F2 then yield the same labelling up to rotation if and only if they define the

same conjugacy class.

Let [w] ∈ Ā0 be a conjugacy class of a word w ∈ A of even length that

contains both at least one a and one a−1 as a subword. We may similarly define

an a-decomposition of such a cyclic labelling. One may show that in this geometric

model the maps ᾱ (resp. β̄) can then be defined just like for α and β by replacing

the words in S+
a by a and the words in S−a by a−. If [w] ∈ Ā0 does not contain

both a and a−1 as subwords then ᾱ([w]) = e in both cases. Consider the following

example:
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Example 5.1.7. Let w = ab−1a−1ba−1b−1ab−1ab ∈ A. Its conjugacy class is de-

picted in Figure 5.1. We observe that w starts with a and set w′ = b−1a−1ba−1b−1ab−1ab

so that w = aw′. By Definition 5.1.6, ᾱ([w]) = [α(aw′a)a−1] = [(ab−1a−1b−1a) a−1] =

[ab−1a−1b−1]. However, we could have also done an a-decomposition of the ele-

ments on a circle as pictured in Figure 5.1 (A) with s1 = ab−1aba ∈ S+
a and

s2 = a−1ba−1 ∈ S−a and obtained the same result.

Similarly, let w = abab−1ab. It’s conjugacy class is represented by a cyclic

labelling of a circle in Figure 5.1 (B). The first letter of w is a. Set w′ = bab−1ab

so that w = aw′. The a-decomposition of aw′a = s1 ∈ S+
a . Hence ᾱ([w]) =

[α(aw′a)a−1] = [(a) a−1] = [e] ∈ Ā0.

Proposition 5.1.8. Let ᾱ, β̄ : Ā0 → Ā0 be defined as above and let [w] ∈ Ā0.

Then |ᾱ([w])| ≤ |[w]| with equality if and only if ᾱ([w]) = [w]. The analogous

statement holds for β̄. If [w] is a non-trivial class in the commutator subgroup of

F2 then ᾱ([w]) and β̄([w]) are non-trivial. If ᾱ([w]) = [w] = β̄([w]) then [w] may

be represented by w = [a, b]n for n ∈ Z.

Proof. To see that ᾱ, β̄ decrease length unless they fix classes is the same argument

as in the proof of Proposition 5.1.4. If [w] is a non-trivial class in the commutator

subgroup of F2 then there is a reduced representative w such that w = av1a
−1v2

for some appropriate v1, v2 ∈ A and we see that ᾱ([w]) is non-trivial as it also

contains the subletters a and a−1. If w ∈ A is a representative such that ᾱ fixes

[w] then w has to be of the form w =
∏k

i=1 ayia
−1y′i for some yi, y

′
i ∈ {b, b−1},

k ≥ 1 and similarly, if β̄ fixes a class then the a representative has to be of the

form w =
∏k

i=1 xibx
′
ib
−1 for some xi, x

′
i ∈ {a, a−1}, k ≥ 1. Comparing both yields

the statement.

Proposition 5.1.9. Assume that w ∈ A is non-empty, has even length and that

c1, c2 ∈ A are words such that c1wc2 ∈ A is again an alternating word. Then there

are words d1, d2, w
′ ∈ A such that α(c1w

nc2) = d1w
′n−1d2 ∈ A for all n ≥ 1 as

reduced words where w′ has even length and [w′] = ᾱ([w]) ∈ Ā0. If w lies in the

commutator subgroup then w′ is non-empty. The analogous statement holds for β.

Proof. If w ∈ A does not contain both a positive and a negative power of a, the

statement follows by an easy calculation. Note that this is the case if and only
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if ᾱ([w]) = [e]. Otherwise w contains at least one sub-letter a and one sub-letter

a−1. This is the case if w lies in the commutator subgroup. Suppose without loss

of generality that w = v1av2a
−1v3 as a reduced word for some v1, v2, v3 ∈ A. By

multiple applications of Proposition 5.1.4, we see that

α(c1w
nc2) = α(c2

(
v1av2a

−1v3

)n
c2)

= α(c1v1a)a−1α(av2a
−1v3(v1av2a

−1v3)n−1c2)

= α(c1v1a)a−1α(av2a
−1v3v1a)a−1α(av2a

−1v3(v1av2a
−1v3)n−2c2)

= α(c1v1a)a−1
(
α(av2a

−1v3v1a)a−1
)2
α(av2a

−1v3(v1av2a
−1v3)n−3c2)

= · · ·

= α(c1v1a)a−1(α(av2a
−1v3v1a)a−1)n−1α(av2a

−1v3c2)

as non-reduced elements in the free group. Then we define d1, d2 and w′ to be the

reduced representative of

α(c1v1a)a−1, α(av2a
−1v3c2) and α(av2a

−1v3v1a)a−1

respectively. Moreover, α(av2a
−1v3v1a) is a reduced alternating word which starts

and ends in a and contains the a−1 as a sub-letter. If follows that w′, the reduced

representative of α(av2a
−1v3v1a)a−1, starts with a, contains a−1 and ends with a

power of b, so w′ is non-empty. Further observe that ᾱ([av2a
−1v3v1]) is represented

by α(av2a
−1v3v1a)a−1 and hence [w′] = ᾱ(w).

5.1.2 Letter-Thin Triples, α and β

In order to streamline proofs later and ease notation we define an equivalence

relation on triples (x1, x2, x3). We think of such a triple as the sides of a (thin)

triangle. We stress that the xi are not actually the side of triangles in some metric

space; see Figure 5.2. Here, we study a special type of triples, namely letter-thin

triples in Definition 5.1.12.

Definition 5.1.10. Let (x1, x2, x3) be a triple of elements in F2 and let φ : F2 →
F2 be a set-theoretic function. We will understand by φ(x1, x2, x3) the triple

(φ(x1), φ(x2), φ(x3)). We define ∼ to be the equivalence relation on triples gener-

ated by
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(i) (x1, x2, x3) ∼ (x2, x3, x1)

(ii) (x1, x2, x3) ∼ (x−1
3 , x−1

2 , x−1
1 )

(iii) (x1, x2, x3) ∼ φa(x1, x2, x3), where φa : F2 → F2 is the automorphism defined

via a 7→ a−1 and b 7→ b.

(iv) (x1, x2, x3) ∼ φb(x1, x2, x3), where φb : F2 → F2 is the automorphism defined

via a 7→ a and b 7→ b−1.

for all x1, x2, x3 ∈ F2 and say that (x1, x2, x3) is equivalent to (y1, y2, y3) if (x1, x2, x3) ∼
(y1, y2, y3) under this relation.

Imagining (x1, x2, x3) as labelling the sides of a triangle, two triples are equiv-

alent if they may be obtained from each other by a sequence of rotations (i), flips

(ii) or by changing the signs of its labels (iii) & (iv).

Proposition 5.1.11. Let x1, x2, x3, y1, y2, y3 ∈ F2 such that (x1, x2, x3) ∼ (y1, y2, y3).

Then if x1, x2, x3 ∈ A also y1, y2, y3 ∈ A. Moreover, in this case α(x1, x2, x3) ∼
α(y1, y2, y3) and β(x1, x2, x3) ∼ β(y1, y2, y3).

Proof. The first part is clear from the definitions. Note that α commutes both with

“rotating the side” (i) and taking inverses (ii) as α satisfies that α(w−1) = α(w)−1

for w ∈ A.

Let w = y0s1y1 · · · yk−1skyk be the a-decomposition of w (see Definition 5.1.2),

where yi ∈ {b, b−1} and si ∈ S+
a ∪ S−a alternates between S+

a and S−a . Then

φa(w) = y0φa(s1)y1 · · · yk−1φa(sk)yk

where φ(si) ∈ S+
a if and only if si ∈ S−a and φ(si) ∈ S−a if and only if si ∈ S+

a .

So α(φa(w)) = φa(α(w)) and hence α ◦ φa(x1, x2, x3) is equivalent to α(x1, x2, x3).

Similarly, φb(w) = φb(y0)φb(s1)φb(y1) · · ·φb(yk−1)φb(sk)φb(yk) where both φb(si)

and si lie in the same set S+
a or S−a . We see that once more, α(φb(w)) = φb(α(w))

and hence also α ◦ φb(x1, x2, x3) is equivalent to α(x1, x2, x3). Analogously, we see

the statement for β.

For a visualisation of the following definition we refer the reader to Figure 5.2.
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Definition 5.1.12. Let x1, x2, x3 ∈ A be alternating elements. The triple (x1, x2, x3)

is called letter-thin triple in one of the following cases:

[T1] There are (possibly trivial) elements c1, c2, c3 ∈ A such that

[T1a] (x1, x2, x3) ∼ (c−1
1 abc2, c

−1
2 b−1ac3, c

−1
3 a−1c1) or

[T1b] (x1, x2, x3) ∼ (c−1
1 bac2, c

−1
2 a−1bc3, c

−1
3 b−1c1)

where all words are required to be reduced.

[T2] There are (possibly trivial) elements c1, c2 ∈ A such that

[T2a] (x1, x2, x3) ∼ (c−1
1 b−1abc2, c

−1
2 b−1, bc1) or

[T2b] (x1, x2, x3) ∼ (c−1
1 a−1bac2, c

−1
2 a−1, ac1)

where all words are required to be reduced.

In all cases, ∼ denotes the equivalence of triples of Definition 5.1.10. We say that a

letter-thin triple (x1, x2, x3) is of type [T1a], [T1b], [T2a] or [T2b] if it is equivalent

to the corresponding triple above.

Note for example in the representatives of [T1a] above, necessarily c1, c3 are

either empty or their first letter is a power of b. Similarly, c2 is either empty or

its first letter is a power of a, else the xi would not be alternating.

Note that for any letter-thin triple (x1, x2, x3) of type [T1a] we may always find

elements d1, d2, d3 ∈ A with first letter a power of b such that

(x1, x2, x3) = (d−1
1 x1d2, d

−1
2 x2d3, d

−1
3 x3d1) (5.1)

where xi ∈ {a, a−1} are such that not all of x1, x2 and x3 are equal i.e. have the

same parity. As we consider the triples only up to equivalence one may wonder if

we can assume that any triple as in Equation (5.1) such that not all of di are empty

is letter-thin of type [T1a]. However, this is not the case: As x1, x2, x3 do not all

have the same parity, there is exactly one i such that xi = xi+1 where indices are

considered mod 3. Then one may see that (x1, x2, x3) is of type [T1a] if and only

if di+1 is non-trivial. For example, (d−1
1 a, ad3, d

−1
3 a−1d1) is not letter-thin for any

d1, d3 ∈ A empty or starting with a power of b.
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Example 5.1.13. (a, a, a−1) is not letter-thin and by the previous discussion also
the triple (b−1a−1, a−1b, b−1ab) is not letter-thin. However, (b−1a−1b, b−1a−1, ab)
is letter-thin. To see this, note that

(b−1a−1b, b−1a−1, ab)
(iii)∼ (b−1ab, b−1a, a−1b)

= (c−1
1 abc2, c

−1
2 b−1ac3, c

−1
3 a−1c1)

for c1 = b, c2 = e and c3 = e and where
(iii)∼ denotes the equivalence (iii) of the

definition of ’∼’; see Definition 5.1.10.

Note that by definition, if (x1, x2, x3) is letter-thin then all x1, x2, x3 are alter-

nating words.

See Figure 5.2 for the explanation of the name letter-thin triple: First consider

elements g, h ∈ F2 = 〈a, b〉. The triple (g, h, (gh)−1) corresponds to sides of

a geodesic triangle in the Cayley graph Cay(F2, {a, b}) with endpoints e, g, gh.

Note further that there are words c1, c2, c3 ∈ F2 such that g = c−1
1 c2, h = c−1

2 c3,

(gh)−1 = c−1
3 c1 and all these expressions are freely reduced. A letter-thin triple

(x1, x2, x3) is such that each xi is in addition alternating and corresponds almost to

the sides of a geodesic triangle in a Cayley graph, apart from one letter r ∈ {a, b} in

the “middle” of the triangle. Figure 5.2 (B) corresponds to case [T1] of Definition

5.1.12, Figure 5.2 (C) corresponds to case [T2] of Definition 5.1.12. These letter-

thin triples (x1, x2, x3) do not label sides of triangles in a Cayley graph or any

other metric space.

Observe that (x1, x2, x3) is letter-thin if and only if ψ(x1, x2, x3) is letter-thin

for ψ defined as in Proposition 5.1.4 (2) i.e. ψ is the automorphism ψ : F2 → F2

defined via ψ : a 7→ b and ψ : b 7→ a.

The maps α and β respect letter-thin triples:

Lemma 5.1.14. If (x1, x2, x3) is letter-thin. Then both α(x1, x2, x3) and β(x1, x2, x3)

are letter-thin.

Proof. We will proceed as follows: Let (x1, x2, x3) be a letter-thin triple. By

Proposition 5.1.11 it is enough to check that α(x1, x2, x3) is letter-thin for one

representative of the equivalence class. Hence it suffices to check that α(x1, x2, x3)

is letter thin for
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(a) (b) (c)

Figure 5.2: Different “triangles”: (A) arises as a generic thin triangle in the Cayley
graph Cay(F2, {a, b}) of the free group with standard generating set. Figures (B)
and (C) correspond to letter-thin triples [T1a], [T2a]. The grey dotted circles
indicate the part of the letter-thin triples which can not be empty. These letter-
thin triples do not generally live in a Cayley graph or any well-known metric
space.

.

1. Type [T1a]: (x1, x2, x3) = (c−1
1 abc2, c

−1
2 b−1ac3, c

−1
3 a−1c1)

2. Type [T1b]: (x1, x2, x3) = (c−1
1 bac2, c

−1
2 a−1bc3, c

−1
3 b−1c1)

3. Type [T2a]: (x1, x2, x3) = (c−1
1 b−1abc2, c

−1
2 b−1, bc1)

4. Type [T2b]: (x1, x2, x3) = (c−1
1 a−1bac2, c

−1
2 a−1, ac1)

By symmetry, this will show the analogous statement for β.

Proposition 5.1.4, (4) allows us to compute α piecewise i.e. after each oc-

currence of a letter a or a−1 in a reduced word. For any reduced word c ∈ A
starting with a power of b or being empty, we will write c+ for the reduced word

represented by a−1α(ac), which itself is not reduced since α(ac) starts with an a.

Similarly, we will write c− for the reduced word represented by aα(a−1c). Note

that c+ and c− are either empty or their first letter is a power of b, as α(a±c) is

alternating. If c is a word which already has a subscript, say ci, then we will write

ci,+ and ci,−, respectively. We consider each of the above cases independently. For

letter-thin triples (x1, x2, x3) of type [T1a] we compute α(x1, x2, x3) and we will

state exactly which equivalences (i), (ii), (iii) and (iv) of Definition 5.1.10 are

needed to obtain one of the representatives for [T1a], [T1b], [T2a] and [T2b] of
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letter-thin triples as in Definition 5.1.12. For letter-thin triples (x1, x2, x3) of type

[T1b], [T2a] and [T2b] we will just state the type of α(x1, x2, x3) without explicitly

giving the equivalence.

1. Type [T1a]: Suppose (x1, x2, x3) = (c−1
1 abc2, c

−1
2 b−1ac3, c

−1
3 a−1c1). As (x1, x2, x3)

are alternating c2 is either empty or starts with a positive or a negative power

of a. We consider these cases separately:

• c2 is empty. In this case we compute using Proposition 5.1.4,

α(c−1
1 ab) = α(c−1

1 a)a−1α(ab) = α(a−1c1)−1b = (a−1c1,−)−1b = (c1,−)−1ab

α(b−1ac3) = α(b−1a)a−1α(ac3) = b−1ac3,+

α(c−1
3 a−1c1) = α(c−1

3 a−1)aα(a−1c1) = α(ac3)−1c1,− = (ac3,+)−1c1,− = (c3,+)−1a−1c1,−

and hence

α(x1, x2, x3) = ((c1,−)−1ab, b−1ac3,+, (c3,+)−1a−1c1,−)

which is of type [T1a]. Indeed, for c′1 = c1,−, c′2 = e and c′3 = c3,+ we

see that

α(x1, x2, x3) = (c′1
−1
abc′2, c

′
2
−1
b−1ac′3, c

′
3
−1
a−1c′1).

and hence α(x1, x2, x3) is of type [T1a].

• c2 = ad2 where, d2 ∈ A.

α(x1, x2, x3) = ((c1,−)−1ad2,+, (d2,+)−1a−1b−1ac3,+, (c3,+)−1a−1c1,−)

which is of type [T2b] if c1,− is trivial and of type [T1b] else. To see

this we distinguish between three different cases:

– c1,− is trivial: Then

α(x1, x2, x3) = (ad2,+, (d2,+)−1a−1b−1ac3,+, (c3,+)−1a−1)

(i)∼ ((d2,+)−1a−1b−1ac3,+, (c3,+)−1a−1, ad2,+)

(iv)∼ (φb(d2,+)−1a−1bac3,+, φb(c3,+)−1a−1, aφb(d2,+))

= (c′1
−1
a−1bac′2, c

′
2
−1
a−1, ac′1)
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for c′1 = φb(d2,+)−1 and c′2 = c3,+ and hence of type [T2b]. Here

∼ denotes the equivalences on triples defined in Definition 5.1.10

with the corresponding numbering (i)− (iv).

– c1,− is non-trivial and starts with first letter b. Then define d1 via
c1,− = bd1. Hence α(x1, x2, x3) equals:

(d−1
1 b−1ad2,+, (d2,+)−1a−1b−1ac3,+, (c3,+)−1a−1bd1)

(iv)∼ (φb(d1)−1baφb(d2,+), φb(d2,+)−1a−1baφb(c3,+), φb(c3,+)−1a−1b−1φb(d1))

= (c′1
−1
bac′2, c

′
2
−1
a−1bc′3, c

′
3
−1
b−1c′1)

for c′1 = φb(d1), c′2 = φb(d2,+), c′3 = aφb(c3,+) and hence is of type

[T1b].

– c1,− is non-trivial and starts with first letter b−1. Then define d1

via c1,− = b−1d1. Hence α(x1, x2, x3) equals:

(d−1
1 bad2,+, (d2,+)−1a−1b−1ac3,+, (c3,+)−1a−1b−1d1)

(ii)∼d−1
1 bac3,+, (c3,+)−1a−1bad2,+, (d2,+)−1a−1b−1d1)

=(c′1
−1
bac′2, c

′
2
−1
a−1bc′3, c

′
3
−1
b−1c′1)

for c′1 = d1, c′2 = c3,+, c′3 = ad2,+ and hence of type [T1b].

• c2 = a−1d2 where d2 ∈ A.

α(x1, x2, x3) = ((c1,−)−1aba−1d2,−, (d2,−)−1ac3,+, (c3,+)−1a−1c1,−)

which is of type [T1b] if c3,+ is non-trivial and of type [T2b], else. This

can be seen analogously to the previous case.

2. Type [T1b]: Suppose (x1, x2, x3) = (c−1
1 bac2, c

−1
2 a−1bc3, c

−1
3 b−1c1). Up to

equivalence, there are the following sub-cases:

• Both of c1, c3 are empty. Then

α(x1, x2, x3) = (bac2,+, (c2,+)−1a−1b, b−1)

which is of type [T1b]

• c1 is not empty, c3 is empty. Then either
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– c1 = ad1. In this case

α(x1, x2, x3) = ((d1,+)−1a−1bac2,+, (c2,+)−1a−1b, b−1ad1,+)

which is of type [T1b]

– c1 = a−1d1. In this case

α(x1, x2, x3) = ((d1,−)−1ac2,+, (c2,+)−1a−1b, b−1a−1d1,+)

which is of type [T1a].

• c1 is empty and c3 is not. Then either

– c3 = ad3, in which case

α(x1, x2, x3) = (bac2,+, (c2,+)−1a−1bad3,+, (d3,+)−1a−1b−1)

which is of type [T1b].

– c3 = a−1d3, in which case

α(x1, x2, x3) = (bac2,+, (c2,+)−1a−1d3,−, (d3,−)−1ab−1)

which is of type [T1a].

• Both of c1, c3 are non-empty. Then either

– c1 = ad1, c3 = ad3. In this case

α(x1, x2, x3) = ((d1,+)−1a−1bac2,+, (c2,+)−1a−1bad3,+, (d3,+)−1a−1b−1ad1,+)

which is of type [T1b].

– c1 = ad1, c3 = a−1d3. In this case

α(x1, x2, x3) = ((d1,+)−1a−1bac2,+, (c2,+)−1a−1d3,−, (d3,−)−1ad1,+)

which is of type [T1b] if d3,− is non-trivial, and of type [T2b], else.

– c1 = a−1d1, c3 = ad3. In this case

α(x1, x2, x3) = ((d1,−)−1ac2,+, (c2,+)−1a−1bad3,+, (d3,+)−1a−1d1,−)

which is of type [T1b] if d1,− is non-trivial and of type [T2b], else.
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– c1 = a−1d1, c3 = a−1d3. In this case

α(x1, x2, x3) = ((d1,−)−1ac2,+, (c2,+)−1a−1 d3,−, (d3,−)−1ab−1a−1d1,−)

which is of type [T1b] if c2,+ is non-trivial and of type [T2b], else.

3. Type [T2a]: Suppose (x1, x2, x3) = (c−1
1 b−1abc2, c

−1
2 b−1, bc1). We distinguish

between the following cases

• Both of c1, c2 are empty. Then

α(x1, x2, x3) = (b−1ab, b−1, b)

which is of type [T2a].

• One of c1, c2 is empty. Up to equivalence and changing indices we may

assume that c2 is empty. Then either

– c1 = ad1 in which case

α(x1, x2, x3) = ((d1,+)−1a−1b−1ab, b−1, bad1,+)

which is of type [T2a] or

– c1 = a−1d1 in which case

α(x1, x2, x3) = ((d1,−)−1ab, b−1, ba−1d1,−)

which is of type [T1b].

• Both of c1, c2 are non-empty. Then either

– c1 = ad1, c2 = ad2 in which case

α(x1, x2, x3) = ((d1,+)−1a−1b−1ad2,+, (d2,+)−1a−1b−1, bad1,+)

which is of type [T1b] or

– c1 = ad1, c2 = a−1d2 in which case

α(x1, x2, x3) = ((d1,+)−1a−1b−1aba−1d2,−, (d2,−)−1ab−1, bad1,+)

which is of type [T2a] or
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– c1 = a−1d1, c2 = ad2 in which case

α(x1, x2, x3) = ((d1,−)−1ad2,+, (d2,+)−1a−1b−1, ba−1d1,−)

which is of type [T1a] or

– c1 = a−1d1, c2 = a−1d2 in which case

α(x1, x2, x3) = ((d1,−)−1aba−1d2,−, (d2,−)−1ab−1, ba−1d1,−)

which is of type [T1b].

4. Type [T2b]: Suppose (x1, x2, x3) = (c−1
1 a−1bac2, c

−1
2 a−1, ac1). We see that

α(x1, x2, x3) = ((c1,+)−1a−1bac2,+, (c2,+)−1a−1, ac1,+)

which is of type [T2b].

This concludes the proof of Lemma 5.1.14.

5.1.3 Brooks Quasimorphisms, Homomorphisms and Letter-
Thin Triples

For what follows we want to study how the Brooks quasimorphism η0 = ηab − ηba
defined in Example 2.3.3 or certain homomorphisms behave on letter-thin triples.

This will be done in Propositions 5.1.15 and 5.1.16, respectively.

Proposition 5.1.15. Let η0 = ηab − ηba : F2 → Z be as above. Then

|η0(x1) + η0(x2) + η0(x3)| = 1

for every letter-thin triple (x1, x2, x3). In particular η0(x1) + η0(x2) + η0(x3) ∈
{−1,+1}.

Proof. First note that if w = w1w2 ∈ F2 as a reduced word and if z1 is the last

letter of w1 and z2 is the first letter of w, then

η0(w) = η0(w1) + η0(z1z2) + η0(w2). (5.2)
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Let (x1, x2, x3) be a triple. Note that the value

|η0(x1) + η0(x2) + η0(x3)|

is invariant under the equivalences (i) and (ii) of Definition 5.1.10. Up to these

equivalences we see that any letter-thin triple (x1, x2, x3) is equivalent via (i) and

(ii) to the following:

• Type [T1a]: (c−1
1 xyc2, c

−1
2 y−1xc3, c

−1
3 x−1c1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

If ci is empty set zi = e. Else let zi be the first letter of ci. Then, by using

successively Equation (5.2) we see that

η0(x1) = η0(c−1
1 ) + η0(z−1

1 x) + η0(xy) + η0(yz2) + η0(c2)

η0(x2) = η0(c−1
2 ) + η0(z−1

2 y−1) + η0(y−1x) + η0(xz3) + η0(c3)

η0(x3) = η0(c−1
3 ) + η0(z−1

3 x−1) + η0(x−1z1) + η0(c1)

Using that η0(c−1) = −η0(c) for any c ∈ F2 we see that

|η0(x1) + η0(x2) + η0(x3)| = |η0(xy) + η0(y−1x)|

and hence we see that for any choice x ∈ {a, a−1}, y ∈ {b, b−1}

|η0(x1) + η0(x2) + η0(x3)| = 1.

• Type [T1b]: (c−1
1 yxc2, c

−1
2 x−1yc3, c

−1
3 y−1c1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

This case is analogous to the previous case.

• Type [T2a]: (c−1
1 y−1xyc2, c

−1
2 y−1, yc1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

Again, if ci is empty set zi = e. Else let zi be the first letter of ci. By

successively using Equation (5.2) we see that

η0(x1) = η0(c−1
1 ) + η0(z−1

1 y−1) + η0(y−1x) + η0(xy) + η0(yz2) + η0(c2)

η0(x2) = η0(c−1
2 ) + η0(z−1

2 y−1)

η0(x3) = η0(yz1) + η0(c1)

and again we observe that

|η0(x1) + η0(x2) + η0(x3)| = |η0(y−1x) + η0(xy)| = 1

for any choice of x ∈ {a, a−1}, y ∈ {b, b−1}.
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• Type [T2b]: (c−1
1 x−1yxbc2, c

−1
2 x−1, xc1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

This case is analogous to the previous case.

Recall that ηx : F2 → Z denotes the homomorphism which counts the letter x.

Proposition 5.1.16. Let η = ηx + ηy : F2 → Z for x ∈ {a, a−1} or y ∈ {b, b−1}.
Then

|η(x1) + η(x2) + η(x3)| = 1

for any (x1, x2, x3) letter-thin. In particular η(x1) + η(x2) + η(x3) ∈ {−1,+1}.

Proof. Let η be as in the proposition and suppose that (x1, x2, x3) is letter-thin.

Just like in the proof of the previous proposition we will consider the four different

types of letter thin triples up to equivalences (i) and (ii) of Definition 5.1.10.

• Type [T1a]: (c−1
1 xyc2, c

−1
2 y−1xc3, c

−1
3 x−1c1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

We directly calculate, using that η is a homomorphism:

η(x1) = η(c−1
1 xyc2) = −η(c1) + η(x) + η(y) + η(c2)

η(x2) = η(c−1
2 y−1xc3) = −η(c2)− η(y) + η(x) + η(c3)

η(x3) = η(c−1
3 x−1c1) = −η(c3)− η(x) + η(c1)

and hence

|η(x1) + η(x2) + η(x3)| = |η(x)| = 1

for any x ∈ {a, a−1}.

• Type [T1b]: (c−1
1 yxc2, c

−1
2 x−1yc3, c

−1
3 y−1c1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

This case is analogous to the previous case.

• Type [T2a]: (c−1
1 y−1xyc2, c

−1
2 y−1, yc1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

Again we calculate

η(x1) = η(c−1
1 y−1xyc2) = −η(c1)− η(y) + η(x) + η(y) + η(c2)

η(x2) = η(c−1
2 y−1) = −η(c2)− η(y)

η(x3) = η(yc1) = η(y) + η(c1)

103



and hence again

|η(x1) + η(x2) + η(x3)| = |η(x)| = 1

for any x ∈ {a, a−1}.

• Type [T2b]: (c−1
1 x−1yxbc2, c

−1
2 x−1, xc1), for x ∈ {a, a−1} and y ∈ {b, b−1}.

This case is analogous to the previous case.

5.2 Gaps via Letter-Quasimorphisms

The aim of this section is to define letter-quasimorphisms and deduce the criterion

for 1/2 gaps in scl. There will be two types of letter-quasimorphisms: (general)

letter-quasimorphisms (Definition 5.2.1) and well-behaved letter-quasimorphisms

(Definition 5.2.3). The former is useful for applications, the latter will be useful

for proofs. For each letter-quasimorphism Φ: G → A there will be an associated

well-behaved letter-quasimorphism Φ̃: G → A where Φ̃(g) is obtained from Φ(g)

by modifying its beginning and its end; see Proposition 5.2.5.

5.2.1 (Well-Behaved) Letter-Quasimorphisms

As always A denotes the set of alternating words of F2 in the generators a and b.

Definition 5.2.1. Let G be a group. We say that Φ: G → A is a letter-

quasimorphism if Φ is alternating, i.e. Φ(g−1) = Φ(g)−1 for every g ∈ G and

if for every g, h ∈ G one of the following holds:

1. Φ(g)Φ(h)Φ(gh)−1 = e, or

2. there are elements c1, c2, c3 ∈ A and letters x1, x2, x3 such that either x1, x2, x3 ∈
{a, a−1} and x1x2x3 ∈ {a, a−1} or x1, x2, x3 ∈ {b, b−1} and x1x2x3 ∈ {b, b−1}
which satisfy that Φ(g) = c−1

1 x1c2, Φ(h) = c−1
2 x2c3 and Φ(gh)−1 = c−1

3 x3c1

as freely reduced alternating words.

The motivating example for letter-quasimorphisms is the following:
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Example 5.2.2. Consider the map Φ: F2 → A defined as follows. Suppose that

w ∈ F2 has reduced representation an1bm1 · · · ankbmk with all ni,mi ∈ Z where all

but possibly n1 and / or mk are non-zero. Then set

Φ(w) = asign(n1)bsign(m1) · · · asign(nk)bsign(mk)

where sign: Z→ {+1, 0,−1} is defined as usual. This may be seen to be a letter-

quasimorphism and will be vastly generalised to amalgamated free products; see

Lemma 5.4.1. Observe that for any group G and any homomorphism Ω: G→ F2

the map Φ◦Ω: G→ A is a letter-quasimorphism. Suppose that G is residually free.

Then for every non-trivial element g ∈ G there is a homomorphism Ωg : G → F2

such that Ωg(g) ∈ F2 is nontrivial. By applying a suitable automorphism on F2

to Ωg we may assume that Ωg(g) starts in a power of a and ends in a power of

b. Then Φg := Φ ◦ Ωg is a letter quasimorphism such that Φg(g) is nontrivial and

such that Φg(g
n) = Φg(g)n.

Definition 5.2.3. We will call triples (x1, x2, x3) degenerate if they are equivalent

to a triple (w,w−1, e) for some w ∈ A.

LetG be a group. A map Ψ: G→ A is called well-behaved letter-quasimorphism

if Ψ is alternating, i.e. Ψ(g−1) = Ψ(g)−1 for every g ∈ G, and for all g, h ∈ G, the

triple

(Ψ(g),Ψ(h),Ψ(gh)−1)

is either letter-thin (see Definition 5.1.12) or degenerate.

Remark 5.2.4. Note that a triple (x1, x2, x3) is degenerate if and only if there is

some w ∈ A such that (x1, x2, x3) equals (w,w−1, e), (w, e, w−1) or (e, w, w−1).

Note that if Φ: G → A is a well-behaved letter-quasimorphism then also α ◦
Φ: G → A and β ◦ Φ: G → A are well-behaved letter-quasimorphisms. This

follows immediately from Lemma 5.1.14 and the fact that α (resp. β) satisfies

α(w−1) = α(w)−1) (resp. β(w−1) = β(w)−1)) for any w ∈ A.

It is easy to see that every well-behaved letter-quasimorphism is also a letter-

quasimorphism. The contrary does not hold. The map Φ: F2 → A described in Ex-

ample 5.2.2 is a letter-quasimorphism but not a well-behaved letter-quasimorphism.
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For example for g = a, h = a we obtain (Φ(g),Φ(h),Φ(h−1g−1)) = (a, a, a−1),

which is neither letter-thin nor degenerate.

However, we may assign to each letter-quasimorphism Φ a well-behaved letter-

quasimorphism Φ̃. This will be done by pre-composing Φ with a map w 7→ w̃

defined as follows.

Set w̃ = e whenever w ∈ {a, e, a−1}. Else let zs be the first and ze be the

last letter of w ∈ A. Define w̃ as the reduced element in F2 freely equal to

w̃ := ζs(zs)wζe(ze) where

ζs(z) =


e if z = a

a if z = b or b−1

a2 if z = a−1

and

ζe(z) =


e if z = a−1

a−1 if z = b or b−1

a−2 if z = a.

The key point is that w̃ starts with a and ends with a−1, unless w ∈ {a, e, a−1}.
Observe that ζe(z)−1 = ζs(z), and hence the map w 7→ w̃ is alternating, i.e.

w̃−1 = w̃−1. For example, a 7→ e, aba−1 7→ aba−1 and a−1baba 7→ ababa−1.

If Φ: G→ A is a letter-quasimorphism then we define Φ̃ : G→ A via Φ̃(g) :=

Φ̃(g).

Proposition 5.2.5. If Φ: G → A is a letter-quasimorphism then Φ̃ : G → A
is a well-behaved letter-quasimorphism, called the associated well-behaved letter-

quasimorphism.

Proof. As w 7→ w̃ commutes with taking inverses, if Φ is alternating then so is Φ̃.

In what follows we will use the following easy to check claim.

Claim 5.2.6. Let (x1, x2, x3) be an arbitrary triple obtained from (y1, y2, y3) by

applying a sequence of the equivalences (i) and (ii) of Definition 5.1.10. Then

(x̃1, x̃2, x̃3) ∼ (ỹ1, ỹ2, ỹ3). In this case we say that the triples (x1, x2, x3) and

(y1, y2, y3) are equivalent up to rotation and inverses.
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Let g, h ∈ G. We wish to show that (Φ̃(g), Φ̃(h), Φ̃(gh)−1) is a letter-thin triple

or degenerate, i.e. equivalent to (w,w−1, e) for some w ∈ A. If (Φ(g),Φ(h),Φ(gh)−1)

is equivalent up to rotation and inverses to (u1, u2, u3) the above claim implies that

it suffices to check that (ũ1, ũ2, ũ3) is either letter-thin or equivalent to (w,w−1, e).

First suppose that g, h are as in Case (1) of Definition 5.2.1 i.e. Φ(g)Φ(h)Φ(gh)−1 =

e. If one of Φ(g), Φ(h) and Φ(gh) are trivial then the two other elements are in-

verses. Hence, up to rotation and taking inverses we may assume that

(Φ(g),Φ(h),Φ(gh)−1) = (u, u−1, e)

for some u ∈ A. Hence (ũ, ũ−1, e) is degenerate.

If none of Φ(g), Φ(h) and Φ(gh)−1 are trivial then, as Φ maps to alternating

elements, there are elements u1, u2 such that u1 ends in a power of a and u2 starts

in a power of b, such that (Φ(g),Φ(h),Φ(gh)) is equivalent up to rotation and

taking inverses to (u1, u2, u3) where u3 = u−1
2 u−1

1 as a reduced word. Further,

write u1 = u′1x as a reduced word for x ∈ {a, a−1} and an appropriate word

u′1 ∈ A. If u′1 is empty, then ũ1 = e. Let z2 be the last letter of u2. Then

(ũ1, ũ2, ũ3) = (e, au2ζe(z2), ζe(z2)−1u−1
2 a−1)

which is equivalent to (w,w−1, e) for w = au2ζe(z2). If u′1 is non-empty, let z1 be

the first letter of u′1 and as before let z2 be the last letter of u2. Then

(ũ1, ũ2, ũ3) = (ζs(z1)u′1a
−1, au2ζe(z2), ζe(z2)−1u−1

2 x−1u′−1
1 ζs(z1)−1)

which can be seen to be letter-thin of type [T1a]. This shows that (Φ̃(g), Φ̃(h), Φ̃(gh)−1)

is letter-thin or degenerate if Φ(g)Φ(h)Φ(gh)−1 = e.

Hence, suppose that g, h are as in Case (2) of Definition 5.2.1. Then (Φ(g),Φ(h),Φ(gh))

is equivalent up to rotation and inverses to

(u1, u2, u3) = (c−1
1 xc2, c

−1
2 xc3, c

−1
3 x−1c1)

for x ∈ {a, b} where c1, c2, c3 ∈ A are arbitrary i.e. we do not assume that c2 is

non-empty as in Definition 5.1.12. First, suppose that x = b. Define

di =

{
ciζe(zi) if ci 6= e

a−1 else
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where zi is the last letter of ci. We may see then, that

(ũ1, ũ2, ũ3) = (d−1
1 bd2, d

−1
2 bd3, d

−1
3 b−1d1)

which is letter thin of type [T1b] as all di’s are non trivial.

Hence, suppose that x = a. For what follows, if ci is non-empty, we will denote

by zi the last letter of ci and let di be the freely reduced word represented by

ciζe(zi). Observe that if ci is non-empty then so is di.

There are the following cases:

(i) c1 6= e, c2 6= e, c3 6= e: Then (ũ1, ũ2, ũ3) = (d−1
1 ad2, d

−1
2 ad3, d

−1
3 a−1d1)

(ii) c1 6= e, c2 6= e, c3 = e: Then (ũ1, ũ2, ũ3) = (d−1
1 ad2, d

−1
2 a−1, ad1)

(iii) c1 6= e, c2 = e, c3 6= e: Then (ũ1, ũ2, ũ3) = (d−1
1 a−1, ad3, d

−1
3 a−1d1)

(iv) c1 = e, c2 6= e, c3 6= e: Then (ũ1, ũ2, ũ3) = (ad2, d
−1
2 ad3, d

−1
3 a−1)

(v) c1 6= e, c2 = e, c3 = e: Then (ũ1, ũ2, ũ3) = (d−1
1 a, e, a−1d1)

(vi) c1 = e, c2 6= e, c3 = e: Then (ũ1, ũ2, ũ3) = (ad2, d
−1
2 a−1, e)

(vii) c1 = e, c2 = e, c3 6= e: Then (ũ1, ũ2, ũ3) = (e, ad3, d
−1
3 a−1)

(viii) c1 = e, c2 = e, c3 = e: Then (ũ1, ũ2, ũ3) = (e, e, e)

and cases (i)−(iv) can be seen to be letter-thin of type [T1a] and cases (v)−(viii)

can be seen to be degenerate. This completes the proof.

Both letter-quasimorphisms and well-behaved letter-quasimorphisms are exam-

ples of quasimorphism in the sense of Hartnick–Schweitzer [HS16]; see Subsection

2.2.6. Let Φ be a letter-quasimorphism and let η̄ : F2 → R be an ordinary homo-

geneous quasimorphism with defect D which vanishes on the generators a, b. We

wish to calculate the defect of η̄ ◦ Φ. Fix g, h ∈ G. If Φ(g)Φ(h) = Φ(gh), then

|η̄ ◦ Φ(g) + η̄ ◦ Φ(h)− η̄ ◦ Φ(gh)| ≤ D

Else, up to rotating the factors we see that

(Φ(g),Φ(h),Φ(gh)−1) = (d−1
1 xd2, d

−1
2 d3, d

−1
3 d1)
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for some appropriate d1, d2, d3 ∈ A, x ∈ {a, a−1, b, b−1}. Then, as η̄ is homogeneous

η̄(d−1
1 xd2) = η̄(xd2d

−1
1 ) and hence |η̄(xd2d

−1
1 )− η̄(d2d

−1
1 )| ≤ D as we assumed that

η̄ vanishes on the generators. Then we may estimate

|η̄ ◦ Φ(g) + η̄ ◦ Φ(h) + η̄ ◦ Φ(gh)−1| = |η̄(d−1
1 xd2) + η̄(d−1

2 d3) + η̄(d−1
3 d1)| ≤ 4D

and after homogenisation of φ = η̄ ◦ Φ(g) we estimate that D(φ̄) ≤ 8D using

that homogenisation at most doubles the defect; see Proposition 2.2.5. Hence if

Φ(g) ∈ F′2 is such that Φ(gn) = wn for some non-trivial w ∈ A which also lies in

the commutator subgroup F′ and η : F2 → R is homogenous and extremal to Φ(g)

with defect 1 then, by Bavard,

scl(g) ≥ φ̄(g)

16
≥ η̄(Φ(g))

16
=

scl(Φ(g))

8

and in particular scl(g) ≥ 1/16. This is already a good estimate but we see that

we can do much better; see Theorem E.

We will see that this notion is much more flexible than homomorphisms. There

are groups G such that for every non-trivial element g ∈ G′ there is a letter-

quasimorphisms Φ such that Φ(g) is non-trivial. This may be possible even if the

group G is not residually free, for example if G is a right-angled Artin group; see

Section 5.5.

5.2.2 Main Theorem

We now deduce our main criterion for 1/2-gaps in scl:

Theorem E. Let G be a group and let g0 ∈ G. Suppose there is a letter-

quasimorphism Φ: G→ A such that Φ(g0) is non-trivial and that Φ(gn0 ) = Φ(g0)n

for all n ∈ N. Then there is an explicit homogeneous quasimorphism φ̄ : G → R
with D(φ̄) ≤ 1 such that φ̄(g0) ≥ 1. If g0 ∈ G′, then scl(g0) ≥ 1/2.

If G is countable then there is an action ρ : G→ Homeo+(S1) such that [δ1φ̄] =

ρ∗euR
b ∈ H2

b(G,R), for euR
b the real bounded Euler class.

In particular, the Φ(g0) ∈ A of the Theorem has to be alternating and of even

length, else Φ(g0)n would not be an alternating word.
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Proof. Let Φ: G → A be the letter-quasimorphism as in the theorem and let

Φ̃ : G→ A be the associated well behaved letter-quasimorphism described above.

As Φ̃(g0) is obtained from Φ(g0) by just possibly changing the beginning and the

end of the word Φ(g0), it is easy to see that there are words c1, c2, w ∈ A such that

Φ̃(gn0 ) = c−1
1 wn−1c2 as a freely reduced word for all n ≥ 1.

Consider the sequence γi of maps γi : A → A defined via γ0 = id, γ2k+1 =

(α ◦ β)k ◦ α and γ2k = (β ◦ α)k and note that γi is either α ◦ γi−1 or β ◦ γi−1;

see Definition 5.1.2. Analogously define the sequence γ̄i : Ā0 → Ā0 of maps via

γ̄0 = id, γ̄2k+1 = (ᾱ ◦ β̄)k ◦ ᾱ and γ̄2k = (β̄ ◦ ᾱ)k and note that every γ̄i is either

ᾱ◦ γ̄i−1 or β̄ ◦ γ̄i−1; see Definition 5.1.6. For every letter-thin triple (x1, x2, x3) also

γi(x1, x2, x3) is letter-thin by multiple applications of Lemma 5.1.14. Furthermore,

if (x1, x2, x3) is a degenerate triple as in Definition 5.2.3, then also γi(x1, x2, x3) is

a degenerate triple as γi satisfies γi(x
−1) = γi(x)−1 for all x ∈ A.

Let w be as above and consider the sequence γ̄i(w) ∈ Ā0 of conjugacy classes

in Ā0. By Proposition 5.1.8, if γ̄i(w) is a non-trivial equivalence class in the

commutator subgroup then γ̄i+1(w) either is non-trivial and has strictly smaller

word-length or γ̄i(w) = γ̄i+1(w); see also Remark 5.1.5.

Hence, there are the following cases:

• For all i ∈ N, γ̄i(w) lies in F′2, the commutator subgroup. Then, there is

an N such that γ̄N(w) = γ̄N+i(w) for all i ∈ N. Both ᾱ and β̄ then fix the

class γ̄N(w). By Proposition 5.1.8, γ̄N(w) may be represented by [a, b]k for

k ∈ Z\{0}. Hence, the quasimorphism η0 = ηab − ηba studied in Example

2.3.3 and Proposition 5.1.15, satisfies that |η̄0(γ̄N(w))| ≥ 2. Define ψ : G→ Z
via

ψ(g) :=

{
η0 ◦ γN ◦ Φ̃(g) if γN ◦ Φ̃(g) 6= e

1 else

and observe that if γN ◦ Φ̃(g) is non-trivial, then ψ(g−1) = −ψ(g). By mul-

tiple applications of Proposition 5.1.9, we see that there are some elements

d1, d2, w
′ ∈ A such that γN ◦Φ̃(gn) = d1w

′n−Kd2 for all n ≥ K, for K ≤ N+1
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and [w′] = γ̄N([w]). We see that

|ψ̄(g0)| = lim
n→∞

|ψ(gn0 )|/n

= lim
n→∞

|η0 ◦ γN ◦ Φ̃(gn0 )|/n

= lim
n→∞

|η0(d1w
′n−Kd2)|/n

= |η̄0(γ̄N([w]))| ≥ 2.

By multiple applications of Lemma 5.1.14 and the fact that α(w−1) =

α(w)−1, β(w−1) = β(w)−1 and α(e) = e = β(e) we see that γN ◦ Φ̃ is a

well-behaved letter-quasimorphism. Let g, h ∈ G. We wish to compute the

defect |ψ(g)+ψ(h)−ψ(gh)|. To ease notation define (x1, x2, x3) as the triple

(x1, x2, x3) = (γN ◦ Φ̃(g), γN ◦ Φ̃(h), γN ◦ Φ̃(gh)−1)

which is either letter-thin or degenerate as γN ◦ Φ̃ is a well-behaved letter-
quasimorphism. If (x1, x2, x3) letter-thin then none of its components xi are
empty. Hence by Proposition 5.1.15,

|ψ(g) + ψ(h)− ψ(gh)|=|ψ(g) + ψ(h) + ψ(h−1g−1)|
=|η0(x1) + η0(x2) + η0(x3)|
=1.

Suppose that (x1, x2, x3) is degenerate. Then one may see that (x1, x2, x3)

equals (v, v−1, e), (v, e, v−1) or (e, v, v−1) for some v ∈ A. Using that−η0(v) =

η0(v−1) for e 6= v ∈ A we see that two terms of ψ(g) + ψ(h) − ψ(gh) will

cancel and for the other will be 1. Hence, |ψ(g)+ψ(h)−ψ(gh)| = 1. Finally,

if (x1, x2, x3) = (e, e, e) then ψ(g) + ψ(h) − ψ(gh) = 1. In particular we see

that for any g, h ∈ G, ψ(g) + ψ(h) − ψ(gh) ∈ {1,−1}, so ψ is a quasimor-

phism. Moreover, by possibly changing the sign of ψ we may assume that

ψ̄(g0) ≥ 2.

• Otherwise, let N ∈ N be the smallest integer such that γ̄N(w) 6∈ F′2. Then

γ̄N(w) ∈ A is represented by a non-trivial even word which is not in the

commutator. Hence

|ηa(γ̄N(w))|+ |ηb(γ̄N(w))| ≥ 2
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where ηa : F2 → Z (resp. ηb : F2 → Z) denotes the homomorphism count-

ing the letter a (resp. b). Observe that homomorphisms are already ho-

mogenised. There is some η = ηx + ηy where x ∈ {a, a−1}, y ∈ {b, b−1} such

that η(γ̄N(w)) ≥ 2. As before, define ψ : G→ Z via

ψ(g) :=

{
η ◦ γN ◦ Φ̃(g) if γN ◦ Φ̃(g) 6= e

1 else.

By a similar argument as above we see that ψ̄(g0) ≥ 2. Again, the triple

(x1, x2, x3) = (γN ◦ Φ̃(g), γN ◦ Φ̃(h), γN ◦ Φ̃(h−1g−1))

is either letter-thin or degenerate. By the same argument as in the previous

case and using Proposition 5.1.16 we conclude that for any g, h ∈ G, |ψ(g) +

ψ(h) − ψ(gh)| = 1, so ψ is a quasimorphism. In particular we see that for

any g, h ∈ G, ψ(g) + ψ(h)− ψ(gh) ∈ {1,−1}.

In both cases, set

φ(g) :=
ψ(g) + 1

2
.

Then we see that, for any g, h ∈ G,

δ1φ(g, h) = φ(g) + φ(h)− φ(gh) =
ψ(g) + ψ(h)− ψ(gh) + 1

2
∈ {0, 1}.

Hence, by Theorem 2.2.4 due to Ghys (see also [Ghy87]), there is an action

ρ : G → Homeo+(S1) on the circle such that ρ∗eub = [δ1φ] ∈ H2
b(G,Z) and hence

ρ∗euR
b = [δ1φ̄] ∈ H2

b(G,R). Here, eub (resp. euR
b ) denotes the (real) bounded Euler

class. Moreover, we observe that φ̄(g) = ψ̄(g)/2, for φ̄ the homogenisation of φ.

Furthermore, as D(ψ) = 1 we estimate by Proposition 2.2.5 that D(ψ̄) ≤ 2 and

hence D(φ̄) ≤ 1.

We conclude that there is a quasimorphism φ : G → R with homogenisation

φ̄ such that D(φ̄) ≤ 1, φ̄(g0) ≥ 1. If G is countable then there is an action

ρ : G→ Homeo+(S1) with [δ1φ] = ρ∗euR
b ∈ H2

b(G,R) where euR
b is the real bounded

Euler class.
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Applying Theorem E to Example 5.2.2 we recover that in every residually free

group G, every non-trivial element g ∈ G′ has stable commutator length at least

1/2. This gap is realised by a quasimorphism induced by a circle action which has

not been known previously.

As said in the introduction we think of letter-quasimorphisms as simplifications

of elements. Sometimes information about w can not be recovered by Φ(w). For

example for the word w = aba−1b−1ab−3a−1b3, we may compute1 scl(w) = 3/4

but scl(Φ(w)) = 1/2. This example may be generalised: Pick an alternating word

w ∈ A that starts and ends in a power of b. Then [a, w] ∈ A and scl([a, w]) = 1/2.

Then for any choice of words v1, v2 ∈ F2 such that Φ(v1) = w, Φ(v2) = w−1 and

such that v = av1a
−1v2 ∈ F′2 we have that Φ(v) = [a, w]. However, scl(v) is

experimentally arbitrarily large.

Remark 5.2.7. As pointed out in the proof all of γi ◦ Φ̃ are well-behaved letter-

quasimorphisms for any i ∈ N. The quasimorphisms ψ defined in the proof are

then pullbacks of the quasimorphism η0 = ηab−ηba or homomorphisms η = ηx +ηy

via these well-behaved letter-quasimorphisms γi ◦ Φ̃ : G→ A ⊂ F2.

Remark 5.2.8. In light of Theorem 2.3.2, a criterion for groups to have the optimal

scl-gap of 1/2 may hence be as follows:

Let G be a non-abelian group. If for every non-trivial element g ∈ G′ there is a

letter-quasimorphism Φ: G→ A such that Φ(gn) = Φ(g)n where Φ(g) is

non-trivial. Then G has a gap of 1/2 in stable commutator length.

By Example 5.2.2 residually free groups have this property and the criterion

has some qualitative similarities to being residually free. We will later see that

also non-residually free groups, like right-angled Artin groups, have this property;

see Section 5.5.

5.3 Left Orders and Left-Relatively Convex Sub-

groups

For what follows we will use the notation and conventions of [ADS15]. We further

emphasise that nothing in this section is original work.

1These calculations are done with scallop, see [Cal]
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An order ≺ on a set X is a subset of X × X where we stress that a pair

(x, y) ∈ X × X is in this subset by writing x ≺ y. Furthermore, the following

holds:

• For all x, y ∈ X either x ≺ y or y ≺ x. We have x ≺ y and y ≺ x if and only

if x = y.

• For all x, y, z ∈ X such that x ≺ y and y ≺ z we have x ≺ z.

A set X with a left group action has a G-invariant order if for all g ∈ G,

x1, x2 ∈ X , x1 ≺ x2 implies that g.x1 ≺ g.x2. A group G is said to be left orderable

if the set G has a G-invariant order with respect to its left action on itself. A

subgroup H < G is said to be left relatively convex in G if the G-set G/H has

some G-invariant order. Note that this definition is valid even if G itself is not left-

orderable. If G itself is orderable, then this is equivalent to the following: There

is an order ≺ on G such that for every h1, h2 ∈ H and g ∈ G with h1 ≺ g ≺ h2

we may conclude g ∈ H. In this case we simply say that H is convex in G. As

e ∈ H, this means that H is a neighbourhood of e. It is not hard to see that left

relatively convex is transitive:

Proposition 5.3.1. 2 Let K < H < G be groups. Then G/K is G-orderable such

that H/K is convex if and only if G/H is G-orderable and H/K is H-orderable.

An easy example of a pair H < G such that H is left relatively convex in G is

Z < Z2 embedded in the second coordinate via the standard lexicographic order.

Similarly, every subgroup G < Z×G embedded via the second coordinate, is left

relatively convex for an arbitrary group G. Every generator of a non-abelian free

group generates a left relatively convex subgroup in the total group; see [DH91].

In fact, [ADS15] show that each maximal cyclic subgroup of a right-angled Artin

group is left relatively convex.

We wish to state the main Theorem of [ADS15]. For this let T denote an ori-

ented simplicial tree, with vertices V(T) and edges E(T) and two maps ι, τ : E(T)→
V(T) assigning to each oriented edge its initial and terminal vertex respectively.

Suppose that G acts on T and denote by Gv (resp. Ge) the stabilisers of a vertex

2See Section 2 of [ADS15]
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v ∈ V(T) (resp. an edge e ∈ E(T)). Note that stabilisers of an edge e naturally

embed into Gι(e) and Gτ(e).

Theorem 5.3.2. 3 Suppose that T is a left G-tree such that, for each T-edge e,

Ge is left relatively convex in Gι(e) and in Gτ(e). Then, for each v ∈ V(T), Gv is

left relatively convex in G. Moreover, if there exists some v ∈ V(T) such that Gv

is left orderable, then G is left orderable.

We deduce the following corollary, see Example 19 of [ADS15] using Bass–Serre

Theory.

Corollary 5.3.3. Let A,B and C be groups and let κA : C ↪→ A and κB : C ↪→ B

be injections and let G = A ?C B be the corresponding amalgamated free product

(see Section 5.4). If κA(C) is left relatively convex in A and κB(C) is left relatively

convex in B, then A and B are left relatively convex in G.

Let H < G be a left relatively convex subgroup and let ≺ be a G-invariant

order of G/H. We define the sign-function sign: G→ {−1, 0, 1} on representatives

g ∈ G of cosets in G/H via

sign(g) =


+1 if gH � H

0 if g ∈ H
−1 if gH ≺ H

Proposition 5.3.4. Let H < G be a left relatively convex subgroup and let ≺
be the G-invariant order of G/H. Then the sign-function with respect to ≺ on

elements in G is independent under left or right multiplication by elements of H.

That is for every g ∈ GrH and for every h ∈ H, sign(hg) = sign(g) = sign(gh).

Proof. Clearly sign(gh) = sign(g) as both g and gh define the same coset. On

the other hand, if hgH � H then by left multiplication gH � H and similarly if

hgH ≺ H then gH ≺ H, so sign(hg) = sign(g).

3Theorem 14 of [ADS15]
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5.4 Amalgamated Free Products

Let A,B,C be groups and let κA : C ↪→ A, κB : C ↪→ B be injections. The

amalgamated free product G = A ?C B with respect to κA and κB it the group via

G = A ?C B = A ? B/〈〈κA(c)−1κB(c) | c ∈ C〉〉.

It is a well-known fact that the homomorphism A→ A ?C B (resp. B → A ?C B)

defined by mapping a ∈ A (resp. b ∈ B) to the corresponding element a ∈ G

(resp. b ∈ G) is injective and that C embeds in G via these injections. See [Ser80]

for a reference. Every element g ∈ G with g ∈ GrC may be written as a product

g = d1 · · · dk

such that all of di are either in Ar κA(C) or in Br κB(C) and alternate between

both. Furthermore for any other such expression

g = d′1 · · · d′k′

one may deduce that k′ = k and that there are elements ci ∈ C, i ∈ {1, . . . , k− 1}
such that d′1 = d1c1, d′i = c−1

i−1dici and d′k = ck−1dk.

For what follows, let≺A (resp. ≺B) be a left order onA/κA(C) (resp. B/κB(C))

and let signA (resp. signB) be its sign on A (resp. B). We define the map

Φ: G → A as follows: If g ∈ C set Φ(g) = e. Else let g = d1 · · · dk be the normal

form described above. Then, set

Φ(g) =
k∏
i=1

Φ(di)

where we define

Φ(di) =

{
asignA(di) if di ∈ Ar κA(C)

bsignB(di) if di ∈ B r κB(C)

and we note that Φ is well defined. To see this let d′1 · · · d′k be another normal

form for g and let ci ∈ C for i ∈ {0, . . . , k + 1} be such that d′i = c−1
i−1dici with

c0 = ck+1 = e. Then

sign(di) = sign(c−1
i−1di) = sign(c−1

i−1dici) = sign(d′i)

by Proposition 5.3.4 and “sign” either “signA” or “signB”.

We claim that:

116



Lemma 5.4.1. Let G = A ?C B and Φ: G→ A be as above. Then Φ is a letter-

quasimorphism.

We will prove this by giving another description of Φ in terms of paths in the

Bass–Serre tree associated to the amalgamated free product G = A ?C B:

Let T be the tree with vertex set V(T) = {gA | g ∈ G} t {gB | g ∈ G} and

oriented edges

E(T) = {(gA, gB) | g ∈ G} t {(gB, gA) | g ∈ G} ⊂ V(T)× V(T)

We define ι, τ : E(T) → V(T) via ι((gA, gB)) = gA, τ((gA, gB)) = gB and simi-

larly, ι(gB, gA) = gB, τ(gB, gA) = gA. Moreover, we set (gA, gB)−1 = (gB, gA)

and (gB, gA)−1 = (gA, gB). It is well-known that T is indeed a connected tree.

G acts on T by left multiplication. We have that StabG(gA) = gAg−1 < G, re-

spectively StabG(hB) = hBh−1 < G, StabG(gA, gB) = gCg−1 and StabG(gB, gA) =

gCg−1

A reduced path of edges is a sequence ℘ = (e1, . . . en), ei ∈ E(T) such that

τ(ei) = ι(ei+1) for every i ∈ {1, . . . , n − 1}, without backtracking. We call n the

length of the path. For what follows, P will be the set of all paths of edges.

We define the following map Ξ: P → A assigning an alternating word to each

path of edges. Let ℘ ∈ P . If ℘ has length 1, then set Ξ(℘) := e. Else, suppose that

℘ has length 2, i.e. ℘ = (e1, e2). Suppose that e1 = (g1A, g1B) and e2 = (g2B, g2A)

and note that g1B = g2B. In particular, g−1
1 g2 ∈ B. Set Ξ(℘) = Ξ((e1, e2)) =

bsignB(g−1
1 g2). Similarly, if e1 = (g1B, g1A) and e2 = (g2A, g2B) note that g1A = g2A

and set Ξ(℘) = Ξ((e1, e2)) = asignA(g−1
1 g2). Finally, for an arbitrary paths ℘ =

(e1, . . . , en) set Ξ(℘) = Ξ(e1, e2) · Ξ(e2, e3) · · ·Ξ(en−2, en−1) · Ξ(en−1, en). Note that

Ξ is well defined. To see this, note that the stabilizer of any edge (gA, gB) (resp.

(gB, gA)) is gCg−1. Hence, if (gA, gB) = (g′A, g′B) (resp. (gB, gA) = (g′B, g′A))

there is a c ∈ C such that gc = g′. If (e1, e2) is a path of edges such that without

loss of generality e1 = (g1A, g1B) = (g′1A, g
′
1B) and e2 = (g2A, g2B) = (g′2A, g

′
2B)

then there are c1, c2 such that g1 = g′1c1 and g2 = g′2c2. Hence

signB(g−1
1 g2) = signB(c−1

1 g′1
−1
g′2c2) = signB(g′1

−1
g′2)

by Proposition 5.3.4. Define the inverse of a path ℘ = (e1, . . . , en) as ℘−1 :=

(e−1
n , . . . , e−1

1 ). We see that Ξ(℘−1) = Ξ(℘)−1 using that sign(g−1) = −sign(g). We
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collect some further properties of Ξ. We note that if ℘ ∈ P is a path then so is
g℘, where g℘ denotes the image of ℘ under the action of g ∈ G.

Proposition 5.4.2. Ξ: P → A has the following properties:

(i) For any ℘ ∈ P and g ∈ G we have Ξ(g℘) = Ξ(℘).

(ii) Let ℘1, ℘2 be two paths of edges such that the last edge in ℘1 is e1, the first

edge of ℘2 is e2 such that τ(e1) = ι(e2) and such that e1 6= e−1
2 . Then

Ξ(℘1 ·℘2) = Ξ(℘1)Ξ(e1, e2)Ξ(℘2) as reduced words, where ℘1 ·℘2 denotes the

concatenation of paths.

(iii) Let g ∈ G and let ℘(g) be the unique path of edges from one of edges

{(A,B), (B,A)} to one of the edges {(gA, gB), (gB, gA)}. Then Ξ(℘(g)) =

Φ(g), for Φ as above.

Proof. To see (i) note that for any path (e1, e2) with e1 = (g1A, g1B) and e2 =

(g2B, g2A) we have

Ξ(e1, e2) = bsign(g−1
1 g2) = bsign(g−1

1 g−1gg2) = Ξ(g(e1, e2))

and the same argument holds for paths with e1 = (g1B, g1A) and e2 = (g2A, g2B).

Point (ii) is immediate from the definition.

To see (iii), without loss of generality assume that the normal form of g is

g = a1b1 · · · akbk. Then

℘(g) = (B,A), (a1A, a1B), (a1b1B, a1b1A), . . . , (gB, gA)

and comparing Ξ(℘(g)) with Φ(g) yields (iii).

We can now prove Lemma 5.4.1:

Proof. Let g, h ∈ G. First, suppose that the midpoints of

{(A,B), (B,A)}, {(gA, gB), (gB, gA)} and {(ghA, ghB), (ghB, ghA)} (5.3)

lie on a common geodesic segment in T. If the midpoint of {(gA, gB), (gB, gA)} lies

in the middle of this segment then there are paths ℘1 and ℘2 such that ℘(g) = ℘1 ·e,
g℘(h) = e · ℘2 and ℘(gh) = ℘1 · e · ℘2 for e either (gA, gB) or (gB, gA). We see
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that in this case Ξ(℘1 · e) · Ξ(e · ℘2) = Ξ(℘1 · e · ℘2) as reduced words in A and

hence Φ(g)Φ(h) = Φ(gh). Analogously we see that Φ(g)Φ(h) = Φ(gh) when the

midpoint of {(A,B), (B,A)} or {(ghA, ghB), (ghB, ghA)} lies in the middle of this

segment. Hence in this case Φ, g, h ∈ G are as in (1) of Definition 5.2.1.

Now suppose that the midpoints in (5.3) do not lie on a common geodesic

segment. Then there are non-trivial paths ℘1, ℘2, ℘3 ∈ P with initial edges e1, e2, e3

satisfying ι(e1) = ι(e2) = ι(e3) and ei 6= ej for i 6= j such that

℘(g) = ℘−1
1 · ℘2 , g℘(h) = ℘−1

2 · ℘3 , and gh℘(((gh)−1) = ℘−1
3 · ℘1.

By Proposition 5.4.2 we infer that

Φ(g) = c−1
1 Ξ(e−1

1 , e2)c2

Φ(h) = c−1
2 Ξ(e−1

2 , e3)c3

Φ(gh)−1 = c−1
3 Ξ(e−1

3 , e1)c1

for ci = Ξ(pi), i ∈ {1, 2, 3}. Without loss of generality assume that ei = (giA, giB),

the case ei = (giB, giA) is analogous. Then

Φ(g) = c−1
1 x1c2

Φ(h) = c−1
2 x2c3

Φ(gh)−1 = c−1
3 x3c1

x1 = bsignB(g−1
1 g2), x2 = bsignB(g−1

2 g3), and x3 = bsignB(g−1
3 g1)

We claim that signB(g−1
1 g2)+signB(g−1

2 g3)+signB(g−1
3 g1) ∈ {−1,+1}. To see this,

note that all of the signs are either {+1,−1} as the edges ei were assumed to be

distinct. Suppose that signB(g−1
1 g2) = signB(g−1

2 g3) = signB(g−1
3 g1) = 1.

Then g−1
1 g2C � C, hence g−1

3 g2C = (g−1
3 g1)g−1

1 g2C � g−1
3 g1C � C, so signB(g−1

3 g2) =

1 and hence signB(g−1
2 g3) = −1, contradiction. Similarly, not all signs can be neg-

ative. Hence indeed signB(g−1
1 g2) + signB(g−1

2 g3) + signB(g−1
3 g1) ∈ {−1,+1} and

so x1x2x3 ∈ {b, b−1}. This shows that Φ is as in (2) of Definition 5.2.1, hence Φ is

a letter-quasimorphism.
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Theorem F. Let A,B,C be groups and κA : C ↪→ A, κB : C ↪→ B be injections

such that both κA(C) and κB(C) are left relatively convex subgroup of A resp. B.

Let G = A ?C B be the amalgamated free product for this data. Then for every

element g0 ∈ G which does not conjugate into A or B, there is a homogeneous

quasimorphism φ̄ : G → R such that φ̄(g0) ≥ 1, D(φ̄) ≤ 1 and φ̄ vanishes on A

and B. If g0 ∈ G′, then scl(g0) ≥ 1/2.

If G is countable then there is an action ρ : G→ Homeo+(S1) such that [δ1φ̄] =

ρ∗euR
b ∈ H2

b(G,R), for euR
b the real bounded Euler class.

Remark 5.4.3. The methods developed in this paper may be modified to obtain

similar gap results for HNN-extensions and graphs of groups, as well gap results for

certain one-relator groups. A generalisation of this and direct proofs of these results

using both quasimorphisms and surface mappings will appear in the forthcoming

preprint [CH].

The existence of a uniform gap was known before; see [CF10] and Subsection

2.3.2

Proof. Let g0 ∈ G be as in the Theorem. Then, if g0 does not conjugate into A or

B we may conjugate g0 by an element g1 ∈ G such that

g′ = g1g0g
−1
1 = a1b1 · · · akbk

for all of ai ∈ A r κA(C) and bi ∈ B r κB(C). It follows that Φ(g′) = w is a

non-empty alternating word of even length and that Φ(g′n) = wn for n ∈ N. By

Theorem E there is a homogeneous quasimorphism φ̄ : G→ R with D(φ̄) ≤ 1 and

1 ≤ φ̄(g0) = ¯φ(g′) using that homogeneous quasimorphisms are invariant under

conjugation. If G is countable then this quasimorphism φ̄ is moreover induced by

a circle action ρ : G→ Homeo+(S1).

5.5 Right-Angled Artin Groups

In this section all graphs will be simplicial, i.e. do not contain multiple edges

between two vertices or loops. Let Γ be a finite simplicial graph with vertices

V(Γ) and edges E(Γ). Given a subset Λ ⊂ V(Γ) the full subgraph on Λ in Γ is the
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graph with vertices Λ where two elements v, w ∈ Λ are connected by an edge if

and only if they are connected in Γ.

For a vertex v ∈ Γ, the link of v is the full subgraph of the set {w | (v, w) ∈
E(Γ)} in Γ and denoted by Lk(v). The closed star is the full subgraph of Lk(v)∪{v}
in Γ and denoted by St(v). The right-angled Artin group or RAAG on Γ is the

group A(Γ) with group presentation

A(Γ) = 〈V(Γ) | [v, w]; (v, w) ∈ E(Γ)〉

A word w in the generators V(Γ) representing an element [w] ∈ A(Γ) is called

reduced if it has minimal word length among all words representing [w]. A word

w is said to be cyclically reduced if it has minimal word length among all of its

conjugates. The support of an element g ∈ A(Γ) is the set of vertices that appear

in a reduced word representing g. It is well-known that the support is well-defined.

Let Γ be a finite simplicial graph, let A(Γ) be the right-angled Artin group of

Γ and let v ∈ Γ. Then A(Γ) can be thought of as an amalgamated free product of

A(St(v)) and A(Γ\{v}) where the common subgroup is A(Lk(v)). i.e.

A(Γ) = A(St(v)) ?A(Lk(v)) A(Γ\{v}).

This will be used both in the proof of Theorem G and for induction arguments.

Proposition 5.5.1. (Section 4 of [ADS15]) Let Λ ⊂ Γ be a full subgraph of Γ.

Then A(Λ) < A(Γ) induced by the embedding, is a left relatively convex subgroup.

Proof. We follow the proof of [ADS15]. We may induct on the following statement:

For any Γ of size at most k and every full subgraph Λ ⊂ Γ, A(Λ) is left relatively

convex in A(Γ). For k = 2 this is just the case of free-abelian and non-abelian

free groups mentioned before. Assume the statement is true for all n ≤ k. Let Γ

be a graph with k + 1 vertices and let Λ ⊂ Γ be a full subgraph. If Λ = Γ there

is nothing to show. Else pick v ∈ V(Γ)\V(Λ) and set Γ′ to be the full subgraph

in Γ on the vertices V(Γ)\{v}. Hence Λ ⊂ Γ′ ⊂ Γ with Γ′ of size k. We wish

to show that A(Γ′) < A(Γ) is a left-relatively convex subgroup. Consider the

amalgamation

A(Γ) = A(St(v)) ?A(Lk(v)) A(Γ′)

121



By induction, A(Lk(v)) < A(Γ′) is a left relatively convex subgroup. Also A(Lk(v)) <

A(St(v)) is a left relatively convex subgroup as A(St(v)) = 〈v〉 × A(Lk(v)).

We may use Corollary 5.3.3 to see that A(Γ′) < A(Γ) is a left relatively con-

vex subgroup. By induction hypothesis, A(Λ) < A(Γ′) is a left-relatively convex

subgroup and by transitivity A(Λ) < A(Γ′) is a left relatively convex subgroup.

We deduce:

Theorem 5.5.2. Let g ∈ A(Γ) be an element in an right-angled Artin group A(Γ)

such that g0 does not conjugate into a subgroup of a clique of Γ. Then there is a

homogeneous quasimorphism φ̄ which vanishes on the generators V(Γ) such that

φ̄(g0) ≥ 1 and D(φ̄) ≤ 1.

Moreover, there is an action ρ : A(Γ)→ Homeo+(S1) such that [δ1φ̄] = ρ∗euR
b ∈

H2
b(G,R), for euR

b the real bounded Euler class.

Observe that no non-trivial element in the commutator subgroup of a right-

angled Artin group conjugates into a clique. An application of Bavard’s Duality

Theorem 2.3.2 yields:

Theorem G. Let g0 be a non-trivial element in the commutator subgroup of a

right-angled Artin group. Then scl(g0) ≥ 1/2. This bound is sharp.

Proof. (of Theorem 5.5.2) Let g ∈ A(Γ) be such an element. We may suppose

that g is cyclically reduced, as homogeneous quasimorphisms are invariant under

conjugation. Choose a vertex v in the support of g such that there is another

vertex w in the support of g which is non-adjacent to v. Such a vertex exists as g

does not conjugate into a clique. Write A(Γ) as

A(Γ) = A(St(v)) ?A(Lk(v)) A(Γ\{v})

and observe that g does not conjugate into any factor of this amalgamation as both

v and w are in the support of g. By Proposition 5.5.1, both A(Lk(v)) < A(St(v))

and A(Lk(v)) < A(Γ\{v}) are left relatively convex subgroups. We conclude

using Theorem F. Commutators in A(Γ) have scl at most 1/2. Hence this bound

is sharp.
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Chapter 6

Collaborative work and on-going
projects

Here we describe open problems and topics that are the subject of collaborative,

on-going, or future research projects.

6.1 Spectrum of Simplicial Volume

The simplicial volume ‖M‖ of an orientable closed connected manifold M is a

homotopy invariant that captures the complexity of representing the fundamental

class by singular cycles with real coefficients (see Section 2.4 for a precise definition

and basic terminology). Simplicial volume is known to be positive in the presence of

enough negative curvature [Gro82] and known to vanish in the presence of enough

amenability. It provides a topological lower bound for the minimal Riemannian

volume (suitably normalised) in the case of smooth manifolds [Gro82].

Until now, for large dimensions d, very little was known about the precise struc-

ture of the set SV(d) ⊂ R≥0 of simplicial volumes of orientable closed connected

d-manifolds. The set SV(d) is countable and closed under addition; see Section

2.4. However, the set of simplicial volumes is fully understood only in dimensions

2 and 3 with SV(2) = N[4] (Example 2.4.2) and SV(3) = N[vol(M)
v
| M ], where M

ranges over all complete finite-volume hyperbolic 3-manifolds with toroidal bound-

ary and where v > 0 is a constant (Example 2.4.3).

This reveals that there is a gap of simplicial volume in dimensions 2 and 3:

For d ∈ {2, 3} there is a constant Cd > 0 such that the simplicial volume of an
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orientable closed connected d-manifold either vanishes or is at least Cd. It was

an open question [Sam99, p. 550] whether such a gap exists in higher dimensions.

For example, until now the lowest known simplicial volume of an orientable closed

connected 4-manifold has been 24 [BK08] (Example 2.4.4).

In joint work with Clara Löh we could show that dimensions 2 and 3 are the

only dimensions with such a gap.

Theorem I (Theorem A; [HL19]). Let d ≥ 4 be an integer. For every ε > 0 there

is an orientable closed connected d-manifold M such that 0 < ‖M‖ ≤ ε. Hence,

the set of simplicial volumes of orientable closed connected d-manifolds is dense

in R≥0.

In dimension 4, we could get the following refinement of Theorem I.

Theorem J (Theorem B; [HL19]). For every q ∈ Q≥0 there is an orientable closed

connected 4-manifold Mq with ‖Mq‖ = q.

We prove these statements by relating simplicial volume to stable commutator

length. We show:

Theorem K (Theorem F; [HL19]). Let G be a finitely presented group that satisfies

H2(G,R) ∼= 0 and let g ∈ G′ be an element in the commutator subgroup. Then

there is an orientable closed connected 4-manifold Mg with

‖Mg‖ = 48 · scl(g).

6.2 Computational Complexity of Commutator

Length

Let F be a non-abelian free group on finitely many generators. Consider the

following decision problems for (stable) commutator length.

Problem (SCL-F ).

Input: w ∈ F ′, k ∈ N.

Output: Is scl(w) ≤ k?
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Figure 6.1: scl histogram for 50000 alternating words of length 36 as in [Cal09b].

where scl(w) denotes the stable commutator length of w in F and

Problem (CL-F ).

Input: w ∈ F ′, k ∈ N.

Output: Is cl(w) ≤ k?

where cl(w) denotes the commutator length of w in F . Both of these decision

problems are decidable as shown by Calegari in [Cal09b] and Culler in [Cul81].

Indeed, Calegari showed that stable commutator length maybe be computed in

polynomial time i.e. SCL-F is in the complexity class P .

Conjecture 6.2.1. CL-F is NP-complete.

6.3 Open Questions in Stable Commutator Length

There are many open questions concerning stable commutator length in free groups.

1. Explain the histogram of Figure 6.1: How are the values of scl distributed

and which rational numbers are obtained?

2. In particular, is there a “second gap” for free groups, i.e. is there a constant

C > 1/2 such that every non-trivial f ∈ F ′ satisfies scl(f) = 1/2 or scl(f) ≥
C. For this, one may wish to characterise the elements for which scl(f) = 1/2.

Conjecture 6.3.1. Let f ∈ F ′ be such that scl(f) = 1/2. Then either cl(f) =

1 or there is a t ∈ F such that cl(ftft−1) = 1.
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In joint work with Giles Gardam we could verify this conjecture for all ele-

ments in the free group on two generators of length less than 20.

3. Recall that in a non-abelian free group F an element w ∈ F is called primitive

if it is part of a free basis of F . For an element w ∈ F define the primitivity

rank of π(w) as

π(w) = min{rk(K) | w ∈ K < F and w not primitive in K},

where by convention π(w) = ∞ if and only if w ∈ F is primitive, as in this

case w is also primitive in every subgroup of F containing it. The primitivity

rank was introduced by Puder [Pud14] and has been used by Louder and

Wilton [LW18] to study negative immersions in one-relator groups. In light

of Conjecture 6.4.1 we believe that there is a connection between surface

maps to one-relator groups and the stable commutator length of the relator

in the free group. Computer experiments suggest the following relationship

between the primitivity rank and stable commutator length:

Conjecture 6.3.2. Let w ∈ F be an element in the free group. Then

scl(w) ≥ π(w)− 1

2
.

This would generalise the gap found by Duncan and Howie [DH91] and would

show that a ’second gap’ only occurs in the free group on two generators.

4. Is there a way to construct extremal quasimorphisms for arbitrary elements

in F , analogous to the construction of Chapter 5? Are all such extremal

quasimorphisms induced by circle actions?

6.4 Simplicial Volume of one-relator groups

Let F be freely generated by the finite set S and let r ∈ F ′. Let Gr = 〈S | r〉 be

the one-relator group with defining relation r. Let αr be the generator of H2(Gr,Z)

and let ‖αr‖1 be the `1-norm of α.

Conjecture 6.4.1. (Heuer–Löh) Let r and αr be above. Then

1

4
‖αr‖1 −

1

2
= scl(r).
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Proposition 6.4.2. (Heuer–Löh) The conjecture holds if

• r = r1xr2x
−1 ∈ F (S ∪ x), where r1, r2 ∈ F (S), or

• r = r1r2, where r1 ∈ F (S1), r2 ∈ F (S2) and S1 ∩ S2 = ∅.

Moreover, this conjecture has been computationally verified in many other

cases.

This is joint work with Clara Löh.

6.5 Norms in Bounded Cohomology

There are two different norms on higher dimensional bounded cohomology of the

free group Hn
b (F,R), n ≥ 3 as defined in [FFPS19]. Recall that for a function

α ∈ Cn
b (F,R), ‖α‖∞ denotes the supremums norm. For any subset S ⊂ F let

‖α‖S = {‖δφ‖∞ | φ(S) = 0, [δφ] = α} and define ‖α‖∞,0 = sup{‖α‖S, S ⊂
F, S finite}.

Conjecture 6.5.1. If n ≥ 3 then the norms ‖ · ‖∞ and ‖ · ‖∞,0 on Hn
b (F,R) are

equivalent, i.e. there is a constant Cn > 0 such that for every class α ∈ Hn
b (F,R)

we have
1

Cn
‖α‖∞ ≤ ‖α‖∞,0 ≤ Cn‖α‖∞.

6.6 Quasi-BNS Invariants

Let G be a group which is finitely generated by a set S. Let Cay(G,S) be the

Cayley graph of G with respect to S. The first BNS-invariant [BNS87] S1(G) ⊂
Hom(G,R) is defined by setting

S1(G) = {φ ∈ Hom(G,R) | Gφ ⊂ Cay(G,S) is connected}

where Gφ = {g ∈ G | φ(g) > 0}. The study of these invariants is intimately linked

to finiteness properties of subgroups of G that contain G′. However, we note that

for random groups G, the homomorphism group Hom(G,R) is trivial and hence

S1(G) is not a useful invariant. On the other hand random groups have many

quasimorphisms, indeed this space is almost surely uncountable dimensional.

127



Question 6.6.1. Is there an analogous definition for BNS invariants involving quasi-

morphisms? How much of the original theory can be generalised to this case?

This is joint work with Dawid Kielak.
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