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CHAPTER 1

STABLE COMMUTATOR LENGTH
Nicolaus Heuer

What is . . . stable commutator length? It is a real invariant which – just like
any good invariant – has several incarnations within mathematics. Indeed, I will
give three different equivalent definitions of stable commutator length (from here on
scl), with some having a more topological, some a more algebraic and some a more
analytic flavour.

This allows us to interconnect several mathematical invariants and fields. We
shall see, for example, how invariants from computer science, dynamical systems,
and graph theory may be used to construct interesting simplicial volumes – via scl,
of course.

The aim of this article is to give a curated overview over the different areas in
stable commutator length, mostly due to personal taste1. The question “What is
. . . scl?” has been answered before by none less than Danny Calegari himself both in
a short survey [Cal08] and in an extensive monograph [Cal09a]. The latter is the
main reference for this introduction.

1and limited knowledge!

3



4 1. STABLE COMMUTATOR LENGTH

1. Three ways to stumble upon scl

There are three different categories in which to stumble upon scl: Topologically,
algebraically and analytically, yielding three different definitions of scl.

In every case we will use the definition to compute the same invariant: The stable
commutator length of a commutator in the free group.

1.1. scl via Commutators. Let G be a group. Recall that a commutator is the
expression [x, y] = xyx

�1
y
�1 for x, y 2 G. The group generated by all commutators

is called the commutator subgroup, denoted by [G,G]. For an element g 2 [G,G] the
commutator length clG(g) measures how many commutators are needed to realise g

as a product, i.e.

clG(g) = min{n | g = [x1, y1] · · · [xn, yn];xi, yi 2 G}

Definition 1.1 (scl algebraically). Let g 2 G be an element in a group. If
g 2 [G,G] lies in the commutator subgroup, we define the stable commutator length
of g in G as

sclG(g) := lim
n!1

clG(g
n
)

n
.

If some power g
N lies in the commutator subgroup, we set sclG(g) =

sclG(g
N
)

N
. If no

power of g lies in the commutator subgroup we set sclG(g) = 1.

Commutator length is easily seen to be subadditive and thus the defining limit
exist.

Example 1.2 (Commutators in Free group). Let F = F ({a, b}) be the free
group with free generating set {a, b}. Then clF ([a, b]) = 1 (as [a, b] is a commuta-
tor), clF ([a, b]2) = 2 (as [a, b]2 is not a commutator) and clF ([a, b]

3
) = 2 (as scl is

surprising and interesting 2).
More generally, Culler [Cul81] found that clF ([a, b]

n
) = bn

2
c + 1. Taking the

limit we see that
sclF ([a, b]) =

1

2
.

1.2. scl via Surfaces. Let X be a topological space with a loop � : S
1 ! X. A

natural measure for the complexity of � is the complexity of a surface ⌃ needed to
fill �.

So what do we mean by filling a loop? We mean that there is a map � : ⌃ ! X

such that the boundary @⌃ maps to X and factors through � via a map @� : @⌃ !

2If you don’t believe me, here is one way to see this: [a, b]3 = [aBA, a2BAb][BAb, B2], where A = a�1

and B = b�1
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S
1, i.e. such that the diagram

@⌃

@�

✏✏

i // ⌃

�

✏✏
S
1

�
// X

commutes. The degree of @� will be denoted by n(⌃,�). We will call such surfaces
admissible.

By complexity we mean - of course - the Euler characteristic of the surface,
except that we only consider non-spherical components. I.e. we define �

�
(⌃) =

P
n

i=1
min{0,�(⌃i)}, where ⌃i are the connected components of ⌃. Finally we define:

Definition 1.3 (scl topologically). Let � : S
1 ! X be a loop in a topological

space X. If there is no admissible surface to � we set sclX(�) = 1. Else, we set

sclX(

X
�) := inf

⌃

1

2
· ��

�
(⌃)

n(⌃,�)

where the infimum ranges over all admissible surfaces with non-zero degree n(⌃,�).

Example 1.4. Consider as a topological space X a torus with a disk removed.
Let � : S

1 ! X be the boundary loop of that disk. Then, the space X itself is a
surface ⌃ with boundary and the identity map has degree 1. Note that ⌃ has genus
one and one boundary component and thus �

�
(⌃) = �1. We thus estimate:

sclX(�)  1

2
· ��

�
(⌃)

n(⌃, id)
=

1

2
.

We note that the fundamental group of X is the free group on two generators a and b
(for example the meridian and longitude) and that � corresponds to the commutator
[a, b] in the fundamental group.

1.3. scl via Quasimorphisms. Let G be a group and let g 2 G be an element.
One of the few objects one may compute (in the Turing sense) from a given presen-
tation are its homomorphisms G ! R. This, however, is rather limiting: We are not
able to see any element g 2 [G,G] in its abelian quotients.

We could of course ask for different target groups, for example by studying G via
its finite quotients. We will take a slightly different approach and instead generalize
the type of morphisms to R. This is one way to motivate the following:

Definition 1.5 (Quasimorphisms). A quasimorphism is a map � : G ! R such
that there is a constant D, such that for all g, h 2 G, |�(g) + �(h) � �(gh)|  D.
The infimum of all such D is called the defect of � and denoted by D(�).

Observe that a map � is a quasimorphism with D(�) = 0 if and only if it is a
homomorphism. Quasimorphisms form a vector space under pointwise addition and
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scalar multiplication. The space of such quasimorphisms is enormous: Indeed, any
bounded function is a quasimorphism. We may get rid of those by only considering
homogeneous quasimorphisms, i.e. those quasimorphisms which additionally satisfy
that �(g

n
) = n · �(g) for all n 2 Z and g 2 G. It may be seen3 that every quasimor-

phism has a unique homogeneous quasimorphism in bounded distance. Homogeneous
quasimorphisms have some interesting properties, for example �(g) = �(hgh

�1
) for

all g, h 2 G.
Fix an element g 2 [G,G]. We may see that for any quasimorphism �(g), we

may bound �(g) uniformly in terms of D(�): For example for any commutator [x, y]
we can write |�([x, y])|  |�(x) + �(y) + �(x

�1
) + �(y

�1
)| + 3D(�)  5D(�) by

successively applying the definition of quasimorphisms. On the other hand, if g 2 G

is such that there is any homomorphism � : G ! R with �(g) > 0 then we may never
bound g just in terms of D(�), since we may arbitrarily scale up �. We thus consider
the following:

Definition 1.6 (scl via Quasimorphisms; [Bav91]). Let G be a group and let
g 2 G be an element. Then

scl
qm

G
(g) := sup

�

1

2
· �(g)

D(�)
,

where the supremum ranges over all homogeneous quasimorphisms � : G ! R with
defect D(�).

Example 1.7 (Brooks Quasimorphisms). Let F = F ({a, b}) be the non-abelian
free group with free generating set {a, b}. We will also write A for a�1 and B for b�1.
Fix a word x 2 F . We denote by ⌫x : F ! N the map that associates to a word w

the number largest number of times x is a subword of w, i.e. the maximum of all n
such that

w = w0 · x · w1 · · ·wn�1 · x · wn

for appropriate wi and where this expression is reduced. We define �x : F ! Z via
�x(w) 7! ⌫x(w) � ⌫x�1(w). It turns out that �x is a quasimorphism, called Brooks
quasimorphism with D(�x)  3. Those maps were originally introduced by Brooks
[Bro81] to show that the space of quasimorphisms on the free group is infinite
dimensional.

Consider the element [a, b] 2 F . It may be seen [Heu19c, Section 2.4] that
� := �ab � �ba satisfies D(�) = 1 and the associated homogeneous quasimorphism �̄

satisfies D(�̄) = 2. Moreover one may compute that �̄([a, b]) = 2.

3Consider for a quasimorphism � : G ! R the map �̄(g) = limn!1
�(gn)

n , called the homogenization
of �. We have that �̄ is a quasimorphism and D(�̄)  2 ·D(�) [Cal09a, Lemma 2.21]
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Putting things together we estimate:

scl
qm

F
([a, b]) � 1

2
· �̄([a, b])

D(�̄)
=

1

2
.

Quasimorphisms (and thus stable commutator length) are directly related to
bounded cohomology as follows.

Proposition 1.8. Let G be a group. The vectorspace of quasimorphisms G ! R
modulus the vector space of trivial quasimorphisms is in a 1-1 correspondence to
ker(c

2
), the kernel of the comparison map c : H

•
b
(G;R) ! H

•
(G;R).

1.4. Wrapping things up: Equivalence of definitions. Of course, all of the
Definitions 1.3, 1.1 and 1.6 of stable commutator length are equivalent!

Theorem 1.9 (Calegari [Cal09a, Proposition 2.10] and Bavard [Bav91]). Let
X be a topological space with fundamental group G and let � : S

1 ! X be a loop
corresponding to the element g 2 G. Then

sclX(�) = sclG(g) = scl
qm

G
(g).

Thus Examples 1.2, 1.4 and 1.7 computed and estimated exactly the same fact,
namely that the stable commutator length of a commutator in the non-abelian free
group on two generators is 1

2
. Note the different nature of the invariants involved:

sclX is an infimum, sclG is a limit and scl
qm

G
is a supremum. It turns out that the

infimum in sclX is only sometimes achieved, while the supremum in scl
qm

G
is always

achieved. The quasimorphisms which achieve this supremum are also called extremal
quasimorphisms.

Since all definitions are equivalent we will now only study scl on groups. We also
note that scl generalizes to formal sums of elements, called chains.

We collect some basic properties:

Proposition 1.10 (Monotonicity). For any homomorphism � : G ! H between
two groups we have that sclG(g) � sclH(�(g)). From this we see that scl is invariant
under automorphisms, and invariant under retractions.

Proposition 1.11 (Finite Index Subgroups). If H < G is a normal finite index
subgroup and g 2 H, then we may compute sclH(h) in terms of sclG as follows:

sclH(h) = sclG(

X

a2A
sclG(aha

�1
)

for A = G/H and where a 2 A is any representative.

2. Vanishing, Gaps and Lions

So: What is stable commutator length? After having seen three equivalent defi-
nitions we will explore scl on finitely presented groups.
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Martin Bridson [Bri06, Figure 1] charted the landscape of finitely presented
groups by means of their large scale geometry. Starting from Z, one may ex-
plore finitely presented groups in two very different directions: One may follow the
amenable path, passing by (in increasing difficulty) the abelian, nilpotent, polycyclic
and solvable groups. One may also wander off in the directions of groups of negative
(or non-positive) curvature, passing by free, hyperbolic, semi-hyperbolic, CAT(0)
and acylindrically hyperbolic groups.

The limits of exploring finitely presented groups are embodied by Lions: As the
workings of any Turing machine may be encoded in a finitely presented group, and as
basic questions of Turing machines are undecidable, there is no hope of understanding
or computing meaningful invariants from arbitrary finitely presented groups.

We will see that scl respects this landscape: Either scl vanishes on the whole
group (in the amenable case), or scl of a group may be uniformly bounded from
below (for groups with non-positive curvature). And we will see that also scl can
not tame the lions, though there has been some progress by cornering them to right-
computable numbers (Theorem 3.3).

2.1. Vanishing. Stable commutator length vanishes for any group with trivial
real second bounded cohomology. This implies that sclG(g) = 0 for any amenable
group G and g 2 G. This is a huge class of groups, encompassing, for example, all
solvable groups. Besides this some other vanishing results are known, for example
for subgroup of piecewise linear transformations of the interval [Cal07].

2.2. Gaps. In contrast, many classes of non-positively curved groups have a
gap in stable commutator length. A group G is said to have such a spectral gap, if
there is a constant C > 0 such that for any element g 2 G either sclG(g) = 0 or
sclG(g) � C. The largest C is called the optimal gap and denoted by CG. Typically,
one may also control the elements which satisfy sclG(g) = 0 and we say that G has
a strong gap if the only element satisfying sclG(g) = 0 is the identity. We will see
that all groups satisfy CG  1

2
.

Why might such a gap be useful? It allows us to obstruct and bound subgroups
as follows: Suppose that H < G is a subgroup of G and that G has a strong scl gap
CG. It follows from the monotonicity (Proposition 1.10) that also H has a strong
scl gap and that CH � CG. Thus, a group G with a strong gap of CG =

1

2
only

have subgroups with strong gaps and CH =
1

2
. This may be seen as some crude

algebraic Tits-alternative. Moreover, if H < G is a finite index subgroup, and H has
a gap C̃H for chains, by the index formula (Proposition 1.11) we may estimate that
C̃H  1

[G:H]
C̃G. This allows one to estimate the indices of subgroups.

We list some notable results on scl gaps:
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Theorem 2.1. We have spectral gaps in the following cases:
(1) Any Gromov hyperbolic group [CF10, Theorem A], though this gap is not

uniform. An element g has sclG(g) = 0 if and only if gn is conjugate to g
�n

for some n 2 Z+.
(2) Any finite index subgroup of the mapping class group Mod(⌃) of a possibly

punctured closed orientable surface ⌃ [BBF16, Theorem B]) There is a
similar characterization for elements with vanishing scl.

(3) The fundamental group of any 3-manifold group [CH19, Theorem C]
(4) Any (subgroup of a) RAAG, in particular any special group, even a strong

gap of precisely 1

2
[Heu19c]. See also [FFT19] and [FST20].

(5) Elements in free and certain amalgamated free products which do not con-
jugate into vertex groups [CFL16, Che18]

(6) Elements in graph products which do not conjugate into vertex groups [CH20b]

2.3. Lions. Beyond the realms of amenability and hyperbolicity lie the Lions,
the groups impossible to slay by means of Turing machines. Given a finitely pre-
sented group and an element g 2 G it is undecidable if sclG(g) = 0 or even if
sclG(g)  C for any real number C.4 However, we may somewhat corner the Lions
(i.e. arbitrary finitely presented groups): We will see (Theorem 3.3) that the scls of
finitely presented groups are always right-computable.

3. Spectrum

We now explore the spectrum of scl for a given group or class of groups, i.e. the
set sclG(G) ⇢ R�0. We will start with the free group. Calegari [Cal09b] found
an algorithm5 to compute scl on free groups. The algorithm showed that scl is
rational on free groups. The algorithm also allowed for computer experiments on
the distribution of scl of random elements, which revealed a striking distribution; see
Figure 1.6 I emphasize that the only thing known about this figure is that scl � 1/2

and scl is rational - that’s it! By merely looking at this figure we may make two
educated guesses (if not conjectures): The spectrum gets very sparse to the left, i.e.
there seems to be a second gap in scl

7 , and scl seems to be much more frequent
4Here is one way to see this: For a finitely presented group G and an element g 2 G in it we will
construct an element g̃ in a group G̃ such that sclG̃(g̃) = 0 if and only if g is trivial in G and
sclG̃(g̃) = 1

2 , else. We may assume that g is infinite torsion by replacing g by g1g2 2 G1 ? G2 in
G1 ? G2, where both gi and Gi for i 2 {1, 2} are a copy of g and G respectively. We may then
observe that g̃ = [g, t] 2 G ? hti := G̃ is trivial if and only if g is trivial in G and that sclG̃(g̃) =

1
2 ,

using the work of Chen [Che18]
5by the name of scallop, which has been implemented by Alden Walker [CW09]. It may be
downloaded on Github, is very fast, and very interesting to play around with!
6The dataset of the 50.000 random scls and the (Python) code to generate this figure may be found
at nicolausheuer.com/code.html
7formally: there seems to be no g 2 F such that 1/2 < sclF (g) < 7/12
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Figure 1. Histogram of scl of 50’000 random words of length 24 in
[F2, F2] using scallop [CW09]

on elements with low denominator, in particular the frequency of p/(2q) seems to
be proportional to q

�d for d ⇠ 2. A statistical analysis of this phenomenon may be
found in [CH20b, Section 7.3].

One may generalize rationality of scl to certain free products [Che18] and to
certain amalgamated free products [?, Che20] including Baumslag–Solitair groups.

Besides free groups, very little is known about the spectrum of scl for other
hyperbolic groups. It is unknown if scl is rational in surfaces groups, besides for
certain elements [FM00].

Which other values may scl take? A big source of examples comes from circle
actions. There is a well established connection between circle actions and bounded
cohomology to do Ghys [Ghy01]. Given a group G with an action on the circle
⇢ : G ! Homeo

+
(S

1
). This action allows us to cyclically extend G via the Euler

class associated to ⇢
8 to a group G̃. Then the action ⇢ on G lifts to an action

⇢̃ : G ! Homeo
+

Z (R), the group of orientation preserving homomorphisms � : R ! R
of the reals which commute with the integers, i.e. such that �(x+ n) = �(x) + n for
all x 2 R and n 2 Z. We define the rotation number of such � via:

rot : � ! lim
n!1

�
n
(0)

n
.

A key insight is that rot : Homeo
+

Z (R) ! R is a homogeneous quasimorphism of
defect 1, which hence defines a quasimorphism on G by pulling rot back via ⇢̃. We
have:

Theorem 3.1 (scl and rotation number; [Cal09a, Section 5]). Let G be a perfect
group which satisfies sclG(G) = 0 and which admits a non-trivial action ⇢ : G ! S

1

on the circle. Then for any element g̃ 2 G̃ in the central extension of G associated

8A introduction to this may be found in [BFH14]
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to the Euler class of ⇢ we have that

scl
G̃
: g̃ 7! |rot(g̃)|

2
,

where rot is the rotation number of g̃.

Note that this already shows that scl
Homeo

+
Z (R)(Homeo

+

Z (R)) = R�0. Rotation
number has been well studied for several groups acting on the circle. An interesting
example of groups with vanishing scl is the group of piecewise linear transformations
of the interval as seen in Section 2.

For example using Thompson’s Group T in Theorem 3.1 one constructs a finitely
presented group whose scl spectrum is exactly Q�0 [Cal09a, Remark 5.20]. Zhuang
used the Stein-Thompson’s Groups to give the first example of finitely presented
groups which have non-rational scl.

Theorem 3.2 ([Zhu07]). There are finitely presented groups which have tran-
scendental stable commutator lengths.

All of the stable commutator lengths he constructed are a quotient of logarithms,
e.g. log(3)/ log(2). Such numbers are either rational or transcendental. It is unknown
if there are finitely presented groups which admit scls which are algebraic and not
rational. I also mention that, using a connection to the fractional stability number of
graphs, one may construct groups with exotic spectrum, such as groups which have
a gap but are eventually dense [CH20b, Theorem I, J].

More is known by considering recursively presented groups. These are all finitely
generated subgroups of finitely presented group. Note that the set of recursively
presented groups is countable, and thus so is the set of scls on it. It is possibly to
characterize the set of scls on this class of groups by their computability.

Theorem 3.3 ([Heu19b, Theorem A]). The set of stable commutator length
on recursively presented groups equals to the set of non-negative right-computable
numbers.

A non-negative real number ↵ is called right-computable if there is a Turing
machine T which for any i 2 N returns a rational number T (i) � 0 such that
T (i+ 1)  T (i) for all i 2 N and ↵ = limi!1 T (i).

4. Relationship to simplicial volume

One application of stable commutator length is to construct manifolds with con-
trolled simplicial volume.

Theorem 4.1 ([HL20b, Theorem F]). Let G be a finitely presented group such
that H2(G;R) ⇠= 0. Then for any g 2 G there is an orientable closed connected (occ)
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manifold M such that
kMk = 48 · sclG(g),

where kMk denotes the simplicial volume of M .

We may use this theorem to translate the spectral results for scl known from
Section 3 to the simplicial volume of manifolds. Using such techniques we see:

Theorem 4.2 ([HL20b, HL20c, HL20a]).

(1) The set of simplicial volumes of occ n-manifolds is dense in R�0 for all
n � 4.

(2) Every rational is the simplicial volume of an occ 4-manifold. Moreover,
there is a sequence Mi of occ 4-manifolds such that kMik ! 0 and such
that kMik are all linearly independent over the algebraic numbers and in
particular transcendental.

(3) The set of locally finite simplicial volumes of oriented connected open n-
manifolds is R�0 for any n � 4.

5. Open Questions in scl

I end this article by listing some open questions about stable commutator length.

(1) What are extremal quasimorphisms for arbitrary elements of the free group?
(2) Is there a second gap of scl in non-abelian free groups F , i.e. are there no

elements g 2 F such that 1

2
 sclF (g)  7

12
?

(3) Is there a finitely presented group which has algebraic but not rational values
scl? Is the set of scls on finitely presented groups the set of right-computable
numbers?

(4) Is scl rational on surface groups? If yes, is this rationality achieved using
extremal surfaces? What about scl on Gromov hyperbolic groups?

This is, at least qualitatively, related to Gromov’s Question: Does every
one-ended hyperbolic group contain a surface subgroup?

(5) In the free group: Is there a connection to the primitivity rank in free
groups? Recall that for an element w 2 F in a free group F the primi-
tivity rank is defined as ⇡(w) = min{rk(H)} where H < F runs over all
subgroups of F such that w 2 H is not primitive in H. It was shown that
the primitivity rank plays a crucial role in understanding the geometry of
its associated one-relator subgroup [LW18]. It was conjectured [Heu19a,
Conjecture 6.3.2] that for all w 2 F , scl(w) � ⇡(w)�1

2
. This would generalize

the gap for elements in free groups. This conjecture has been verified for
all words up to length 16 in free groups [CH20a].
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