Stable Commutator Length in Right Angled Artin Groups

Author: Nicolaus Heuer (heuer@maths.ox.ac.uk)

Supervisor: Martin Bridson

Background

Right-Anlged Artin Groups

For what follows, Γ will be a finite simplicial graph with vertices $V(\Gamma)$ and edges $E(\Gamma)$.

Definition

The right angled Artin group (RAAG) $A(\Gamma)$ associated to Γ is defined via

$$A(\Gamma) = \langle V(\Gamma) \mid [v, w]; (v, w) \in E(\Gamma) \rangle$$

Many groups are now known to be the subgroup or virtually the subgroups of RAAGs:

Example

- (Non-)abelian free groups, higher genus surface groups
- Fundamental groups of special cube complexes
- Fundamental groups of hyperbolic 3-manifolds

Stable Commutator Length

For $g,h \in G$, commutator $[g,h] \in G$ denotes the element $ghg^{-1}h^{-1}$. The commutator subgroup denotes the subgroup G' < G generated by the commutators. For an element $g \in G'$ the commutator length $(\operatorname{cl}(g))$ denotes the word length with respect to this generating set.

Definition

Let $g \in G'$. The stable commutator length $(\operatorname{scl}(g))$ of g is defined via

$$\operatorname{scl}(g) = \lim_{n \to \infty} \frac{\operatorname{cl}(g^n)}{n}$$

Stable commutator length is *monotone* and *characteristic* i.e. for every homomorphism $\phi \colon G \to H$, $\mathrm{scl}(g) \geq \mathrm{scl}(\phi(g))$ and for every automorphism $\phi \colon G \to G$, $\mathrm{scl}(g) = \mathrm{scl}(\phi(g))$.

Stable commutator length encodes the complexity of surface maps to the classifying space. The theory of these invariants was developed by Calegari in [Cal09].

(Spectral) Gaps in scl

For a group G the spectral gap is the supremum over all reals $C \ge 0$ such that for any $e \ne g \in G'$, $\mathrm{scl}(g) \ge C$. Such a gap is necessarily bounded above by 1/2. Many natural classes of groups have a positive spectral gap:

- Residually free gap have a gap of exactly 1/2; see [DH91].
- Elements $g \in G_1 \star G_2$ in a free product where g does not conjugate into one of the factors; see [Che16].
- Hyperbolic groups have a gap, which depends on the hyperbolicity constant and the number of generators; see [CF10].
- Many other classes like Baumslag-Solitar groups, Mapping class groups, etc.

Quasimorphisms and Bavard's Dulaity Theorem

A quasimorphism $\phi \colon G \to \mathbb{R}$ is a map such that there is a C > 0, such that for every $g, h \in G$ $|\phi(g) + \phi(h) - \phi(gh)| \leq C$. The least such C is called the *defect of* ϕ and is denoted by $D(\phi)$. A quasimorphism ϕ is said to be *homogeneous* if for every $g \in G$, $n \in \mathbb{Z}$ we have that $\phi(g^n) = n\phi(g)$. Quasimorphisms may be used to compute scl using *Bavard's Duality Theorem*:

Theorem ([Bav91])

Let G be a group and let $g \in G'$. Then

$$\mathrm{scl}(g) = \sup_{\phi \in Q(G)} \frac{\phi(g)}{2D(\phi)}$$

where Q(G) denotes the vectorspace of homogeneous quasimorphisms.

Left relatively convex subgroups

Definition

A subgroup H < G is *left-relatively convex* if there is a G-invariant order \prec on the right cosets.

In [ADS15] the authors studied left-relatively convex subgroups. They showed that

Theorem ([ADS15])

Let $\Lambda \subset \Gamma$ be a full subgraph of Γ . Then $A(\Lambda) < A(\Gamma)$ is left relatively convex.

Results

Homomorphisms vs. Letter Quasimorphisms

We want to generalise homomorphisms $\Phi \colon G \to \mathbb{F}_2$ since not all groups have 'enough' such maps. For what follows $\mathbb{F}_2 = \langle a, b \rangle$ denotes the free group on the letters a, b and $\mathcal{A} \subset \mathbb{F}_2$ denotes the subset of *alternating* words i.e. words in which no higher powers of a, b occur as subwords.

Homomorphism	Letter Quasimorphisms
A map $\Phi \colon G \to \mathbb{F}_2$ is a ho-	A map $\Phi \colon G o \mathcal{A}$ is called
momorphism if for every two	<i>letter-quasimorphism</i> if for every
elements $g, h \in G$, the elements	two elements $g,h\in G$, the el-
$(\Phi(g),\Phi(h),\Phi(gh)^{-1})$ form a	ements $(\Phi(g), \Phi(h), \Phi(gh)^{-1})$ al-
thin triangle in the Cayley graph:	most form a 'thin triangle': there
there are elements $c_1,c_2,c_3\in\mathbb{F}_2$	are elements $c_1, c_2, c_3 \in \mathbb{F}_2$ and
such that	letters x_1, x_2, x_3 such that
	1, 2, 3
$egin{aligned} \Phi(g) &= c_1 c_2^{-1} \ \Phi(h) &= c_2 c_3^{-1} \end{aligned}$	$\Phi(g) = c_1 \mathbf{x}_1 c_2^{-1}$
$\Phi(h) = c_2 c_3^{-1}$	$\Phi(h) = c_2 \mathbf{x}_2 c_3^{-1}$
$\Phi(gh)=c_1c_3^{-1}$	$\Phi(gh)=c_1\mathrm{x}_3c_3^{-1}$
as reduced words in \mathbb{F}_2 .	as reduced words in ${\cal A}.$
	We additionally require that x_i are
	letters of the same type and that
	$x_1x_2x_3$ is a letter as well.
The corresponding picture is:	The corresponding picture is:
$\Phi(g)$ $\Phi(h)$ $\Phi(gh)^{-1}$	$\Phi(g)$ $\Phi(h)$ c_2 $\Phi(h)$ c_3 c_4 c_4 c_4 c_5 c_4 c_5 c_6 c_6 c_7 c_8 c_9 c

This triangle lies in the Cayley Graph.

$\Phi(gh)^{-1}$ This 'triangle' does not lie in any Cayley Graph.

Letter-Quasimorphisms and Spectral Gaps

If $g \in G'$ is a non-trivial element and $\Phi \colon G \to \mathbb{F}_2$ is a homomorphism such that $\Phi(g)$ is non-trivial, then $\mathrm{scl}(g) \geq 1/2$ by monotinicity of scl and since \mathbb{F}_2 has a scl-gap of 1/2. Similarly:

Theorem (H. '18, [Heu18])

Let $g \in G$ be an element and let $\Phi \colon G \to \mathcal{A}$ be a letter-quasimorphism such that $\Phi(g^n) = \Phi(g)^n$ for $n \in \mathbb{N}$. Then there is an explicit homogeneous quasimorphism $\phi \colon G \to \mathbb{R}$ such that $\phi(g) \geq 1$ and $D(\phi) = 1$. By Bavard's Duality Theorem, $\mathrm{scl}(g) \geq 1/2$.

Letter quasimorphisms arise naturally under the presence of left-invariant orders and left-invariant subgroups.

Example

Let $\Phi \colon \mathbb{F}_2 = \langle \mathtt{a}, \mathtt{b} \rangle o \mathcal{A}$ be the map defined via

 $\Phi \colon a^{n_1}b^{m_1}\cdots a^{n_k}b^{n_k} \mapsto a^{\operatorname{sign}(n_1)}b^{\operatorname{sign}(m_1)}\cdots a^{\operatorname{sign}(n_k)}b^{\operatorname{sign}(n_k)}$

then Φ is a letter quasimorphism.

Spectral Gaps in RAAGs and amalgamated free products Generalising the previous example we may prove:

Theorem (H. '18, [Heu18])

Let $G = A \star_C B$ be an amalgamated free product over a group C which embedds left relatively convex in A and B. Then every element $g \in G'$ which does not conjugate into one of the factors satisfies $\mathrm{scl}(g) \geq 1/2$.

Realising RAAGs as amalgamations of a star over a vertex with the complement over the link we may show:

Theorem (H. '18, [Heu18])

Every element $g \in G'$ in the commutator subgroup of a right-angled Artin group G satisfies $scl(g) \ge 1/2$. This bound is sharp.

This is an improvement of a bound previously found by [FFT16] and [FST17].

References

- [ADS15] Y. Antolín, W. Dicks, and Z. Sunic, *Left relatively convex subgroups*, ArXiv e-prints (2015).
- [Bav91] Christophe Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), no. 1-2, 109–150. MR 1115747
- [Cal09] Danny Calegari, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, 2009. MR 2527432
- [CF10] Danny Calegari and Koji Fujiwara, *Stable commutator length in word-hyperbolic groups*, Groups Geom. Dyn. 4 (2010), no. 1, 59–90. MR 2566301
- [Che16] L. Chen, Spectral gap of scl in free products, ArXiv e-prints (2016).
- [DH91] Andrew J. Duncan and James Howie, *The genus problem for one-relator products of locally indicable groups*, Math. Z. 208 (1991), no. 2, 225–237. MR 1128707
- [FFT16] T. Fernós, M. Forester, and J. Tao, *Effective* quasimorphisms on right-angled Artin groups, ArXiv e-prints (2016).
- [FST17] M. Forester, I. Soroko, and J. Tao, *On stable commutator length in two-dimensional right-angled Artin groups*, ArXiv e-prints (2017).
- [Heu18] N. Heuer, Gaps in scl for Amalgamated Free Products and RAAGs, ArXiv e-prints (2018).