What is stable commutator length?

Nicolaus Heuer, University of Cambridge

What is ..? Seminar in Simplicial Volume and Bounded Cohomology 14. 12. 2020

What is stable commutator length?

Element \in Group; Then *scl*(Element) $\in R_{\geq 0}$

What is stable commutator length?

Element \in Group; Then *scl*(Element) $\in R_{\geq 0}$

Three ways to stumble upon scl:

- 1. Algebraic: Via Commutator length
- 2. Topologic: Via Surfaces
- 3. Analytic: Via Quasimorphisms

SCL: Algebraic

Set	Group G
Element	$g \in [G,G]$

Invariants

SCL: Algebraic

Set	Group G	
Element	$g \in [G,G]$	

$$cl(g) := \min\{n \mid g = [x_1, y_1] \cdots [x_n, y_n]\}$$

Invariants	$scl(g) \coloneqq \lim_{n \to \infty} cl(g^n)/n$
	$\{n \rightarrow \infty\}$

SCL: Algebraic

Set	Group G	
Element	$g \in [G,G]$	

$$cl(g) := \min\{n \mid g = [x_1, y_1] \cdots [x_n, y_n]\}$$

Invariants
$$scl(g) \coloneqq \lim_{\{n \to \infty\}} cl(g^n)/n$$

$$G = F_2, g = [a, b]$$

$$cl([a, b]) = 1$$

$$cl([a, b]^3) = 2$$

$$cl([a, b]^n) = \lceil \frac{n+1}{2}$$

$$scl([a, b]) = \frac{1}{2}$$

SCL: Geometric

Set	Topological space X	
Element	$\gamma \colon S^1 \to X$	
	$\gamma \in [\pi_1(X), \pi_1(X)]$	

Invariants

SCL: Geometric

Set	Topological space X
Element	$\gamma \colon S^1 \to X$
	$\gamma \in [\pi_1(X), \pi_1(X)]$
	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$
Invariants	$scl'(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$

SCL: Geometric

Set	Topological space X		
Element	$\gamma \colon S^1 \to X$		
	$\gamma \in [\pi_1(X), \pi_1(X)]$		
	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$		
Invariants	$scl'(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$		
	$X = \Sigma_{1,1} = \qquad \qquad \gamma = \partial \Sigma_{1,1}$		
Example	$\Phi = id : \Sigma_{1,1} \to X$		
	$\operatorname{scl}'(\gamma) := \operatorname{inf} \frac{-\chi(\Sigma)}{2 n(\Phi)} \le -\frac{-1}{2} = \frac{1}{2}$		

Set	group G	
Element	$g \in [G, G]$	

Invariants

Set	group G	
Element	$g \in [G, G]$	
	Maps $\phi: G \to R$, such that there is a $C > 0$:	
	$\forall g, h \in G \phi(g) + \phi(h) - \phi(gh) < C$	
	Smallest such C: $D(\phi)$	
Invariants	$scl''(g) := sup \frac{\phi(g)}{2 P(f)}$	
	$ZD(\phi)$	
	Where sup runs over all homogenous QM	

Set	group G
Element	$g \in [G, G]$
	Maps $\phi: G \rightarrow R$, such that there is a $C > 0$:
Invariants	$\forall g, h \in G \phi(g) + \phi(h) - \phi(gh) < C$ Smallest such C: $D(\phi)$
	$scl''(g) := sup \frac{\phi(g)}{2 D(\phi)}$
	Where sup runs over all homogenous QM $G = F_2, g = [a, b]$
	$\phi = \phi_1 - \phi_2$
Example	ϕ_1 : count subword ab; ϕ_2 : count subword ba. $D(\phi) = 2$ $\phi([a, b]) = 2$
	$\varphi([a, b]) = 2$ $scl''(g) := sup \frac{\phi(g)}{2D(\phi)} \ge \frac{2}{4} = \frac{1}{2}$

Set	group G	
Element	$g \in [G,G]$	Relationship to:
Invariants	Maps $\phi: G \to \mathbb{R}$, such that there is a $C > 0$: $\forall g, h \in G \phi(g) + \phi(h) - \phi(gh) < C$ Smallest such C: $D(\phi)$ $scl''(g) := sup \frac{\phi(g)}{2 D(\phi)}$ Where sup runs over all homogenous QM	 Bounded Cohomology Circle Actions Combinatorics of words
Example	$G = F_2, g = [a, b]$ $\phi = \phi_1 - \phi_2$ $\phi_1: count subword ab; \phi_2: count subword ba.$ $D(\phi) = 2$ $\phi([a, b]) = 2$ $scl''(g): = \sup \frac{\phi(g)}{2 D(\phi)} \ge \frac{2}{4} = \frac{1}{2}$	•

... of course

... of course

If G is the fundamental group associated to X and g corresponds to γ , then

$$scl(g) = scl'(\gamma) = scl''(g)$$

[Calegari + Bavard]

Basic Properties

- Linear: $\forall g \in G$: $scl(g^n) = n \cdot scl(g)$
- Quasi-Length: $\forall g, h \in G$: $scl(g \cdot h) \leq scl(g) + scl(h) + \frac{1}{2}$

Basic Properties

- Linear: $\forall g \in G$: $scl(g^n) = n \cdot scl(g)$
- Quasi-Length: $\forall g, h \in G$: $scl(g \cdot h) \leq scl(g) + scl(h) + \frac{1}{2}$
- Monotonicity:

If $\Phi: G \to H$ is a homomorphism and $g \in G$, $scl(g) \ge scl(\Phi(g))$

Thus scl is invariant under automorphisms / retracts.

Basic Properties

- Linear: $\forall g \in G$: $scl(g^n) = n \cdot scl(g)$
- Quasi-Length: $\forall g, h \in G$: $scl(g \cdot h) \leq scl(g) + scl(h) + \frac{1}{2}$
- Monotonicity:

If $\Phi: G \to H$ is a homomorphism and $g \in G$, $scl(g) \ge scl(\Phi(g))$

Thus scl is invariant under automorphisms / retracts.

• Finite index Subgroups:

If H < G is a finite index subgroup, then

$$scl_H(g) = \frac{1}{[G:H]} scl_G\left(\sum_a a g a^{-1}\right)$$

for a ranging over coclass representatives.

SCL on FP Groups

Bridon's Universe of FP Groups ([1])

SCL on FP Groups

Vanishing

G satifies that $scl(g) = 0 \forall g \in G$ for:

- G amenable
- Piecewise linear Transformations of Interval (Calegari)
- Thompson's Group T

G has a gap in *scl* if there is a C > 0 such that for all but 'controlled' elements g, we have that $scl(g) \ge C$.

G has a gap in *scl* if there is a C > 0 such that for all but 'controlled' elements g, we have that $scl(g) \ge C$.

Why useful?

Suppose that H arises as a finite index subgroup in G but the index is unknow.

G has a gap in *scl* if there is a C > 0 such that for all but 'controlled' elements g, we have that $scl(g) \ge C$.

Why useful?

Suppose that H arises as a finite index subgroup in G but the index is unknow. Then, using

$$scl_G(g) = \frac{1}{[G:H]} scl_H(\sum_a a g a^{-1})$$

we can bound the index [G:H] from below.

G has a gap in *scl* if there is a C > 0 such that for all but 'controlled' elements g, we have that $scl(g) \ge C$.

For a big class of groups:

- Free groups (Duncan-Howie)
- Hyperbolic groups (Fujiwara Kapovich)
- Mapping Class Groups (Bestvina-Bromberg-Fujiwara)
- 3-manifold groups (Chen-H.)
- Certain Amalgamated Free Products (Chen-H., Clay-Forester-Louwsma)
- RAAGS (H., Forester-Tao-Soroko)

Decidability

Proposition: It is undecidable if an element $g \in G$ has vanishing *scl* or not.

Spectrum

 Free Groups: Have rational scl +there is a fast algorithm to compute it (Calegari, Calegari-Walker) Figure: 50.000 random elements of length 24 in F₂.

Spectrum

- Free Groups: Have rational scl (Calegari)
- BS groups have rational scl (Chen)
- One of the few groups, where full scl-spectrum is known: Universal Central Extension of Thompson's Group T: Has scl all non-negative rationals
- There are groups with non-rational scl (Zhuang)
- For recursively finite groups: all right-computable numbers (H.)

Links to other fields: Simplicial Volume

Theorem (H. – Löh):

Let G be a fp group with $H_2(G; R) = 0$ and let $g \in [G, G]$ be an element. Then there a 4-manifold M such that

 $||M|| = 48 \cdot scl(g).$

Links to other fields: Simplicial Volume

Theorem (H. – Löh):

Let G be a fp group with $H_2(G; R) = 0$ and let $g \in [G, G]$ be an element. Then there a 4-manifold M such that

 $||M|| = 48 \cdot scl(g).$

Corollaries:

- There are 4-manifolds with arbitrary rational simplicial volume
- The set of simplicial volumes in higher dimensions is dense.

Open Questions

- What are extremal quasimorphisms for arbitrary elements of the free group?
- Is there a second gap of scl in non-abelian free groups F between $\frac{1}{2}$ and $\frac{7}{12}$
- Is there a finitely presented group which has algebraic but not rational values scl? Is the set of scls on finitely presented groups the set of right-computable numbers?
- Is scl rational on surface groups? If yes, is this rationality achieved using extremal surfaces? What about scl on Gromov hyperbolic groups?

Thank you for listening!