The spectrum of simplicial volume

Nicolaus Heuer, University of Cambridge joint with Clara Löh, University of Regensburg

Berkeley Differential Geometry Seminar 23. 11. 2020

Motivation of Simplicial Volume

Let M be a (topological) manifold. What is a good notion for Vol(M)?

Motivation of Simplicial Volume

Let M be a (topological) manifold. What is a good notion for Vol(M)?

Volume wish-list:

- 1. $Vol(M) \in \mathbb{R} \ge 0$
- 2. If *M* and N are *n* manifolds and $f: M \to N$ is continuous, then $|\deg(M)| Vol(N) \le Vol(M)$
- 3. Vol(M#N) = Vol(M) + Vol(N)
- 4. $Vol(M \times N) = Vol(M) \cdot Vol(N)$
- 5. Vol(M) reflects honest Riemannian volume in special cases

Definition Simplicial Volume

Def (Gromov, 1984): If *M* is an orientable, closed, connected (occ) n-manifold. Define

 $||M||:= ||[M]||_1$

the *simplicial volume*, where [*M*] is the fundamental class of *M*.

Definition Simplicial Volume

Def (Gromov, 1984): If *M* is an orientable, closed, connected (occ) n-manifold. Define

 $||M|| := ||[M]||_1$

the *simplicial volume*, where [*M*] is the fundamental class of *M*.

Def: Let X be a topological space and let $\alpha \in Hn(X; \mathbb{R})$ be a class in singular homology. Then set

$$||\alpha||_1 \coloneqq \inf\{\sum |\alpha\sigma|; \alpha = \sum \alpha\sigma \cdot \sigma\}$$

the l^1 *norm* of α .

Properties of Simplicial Volume

Vol(M) = ||M||?

Volume wish-list:

- *1.* $||M|| \in \mathbb{R} \ge 0$?
- 2. If *M* and N are *n* manifolds and $f: M \to N$ is continuous, then $|\deg(M)| ||N|| \le ||M||$?
- 3. ||M#N|| = ||M|| + ||N||?
- 4. $||M \times N|| = ||M|| \cdot ||N||$?
- 5. ||M|| reflects honest Riemannian volume in special cases?

Properties of Simplicial Volume

Vol(M) = ||M||?

Volume wish-list:

- $1. ||M|| \in \mathbb{R} \ge 0 \checkmark$
- 2. If *M* and N are *n* manifolds and $f: M \to N$ is continuous, then $|\deg(M)| ||N|| \le ||M|| \checkmark$
- 3. ||M#N|| = ||M|| + ||N||4. $||M \times N|| = ||M|| \cdot ||N||$
- 5. ||M|| reflects honest Riemannian volume in special cases \checkmark

Properties of Simplicial Volume

Vol(M) = ||M||?

Volume wish-list:

- $1. ||M|| \in \mathbb{R} \ge 0 \checkmark$
- 2. If *M* and N are *n* manifolds and $f: M \to N$ is continuous, then $|\deg(M)| ||N|| \le ||M|| \checkmark$

3.
$$||M#N|| = ||M|| + ||N|| \leq (+ \text{ amenable glueings})$$

4.
$$||M \times N|| = ||M|| \cdot ||N|| \times$$

 $||M|| \cdot ||N|| \le \left||M \times N|\right| \le \binom{n+m}{n} ||M|| \cdot ||N||$

- 5. ||M|| reflects honest Riemannian volume in special cases \checkmark
 - M hyperbolic: $||M|| = \frac{Vol(M)}{c_n}$, c_n only depends on dimension of M
 - M amenable: ||M|| = 0.
 - $\frac{||M||}{(n-1)^n \cdot n!} \leq minVol(M)$, n: dimension of M.

Spectrum of Simplicial Volume

Characterize $SV(n) = \{ ||M|| | M \text{ is occ } n - manifold \}$

Spectrum of Simplicial Volume

Characterize $SV(n) = \{ ||M|| | M \text{ is occ } n - manifold \}$

A priori:

- SV(n) is countable
- if $a, b \in SV(n)$ then $a + b \in SV(n)$

Dimension Simplicial Volumes

$$n = 2$$

- Sphere
- Torus
- Higher genus surface

Dimension Simplicial Volumes

- $n = 2 \qquad SV(2) = \mathbb{N}[4]$
- Sphere ||S²|| = 0
- Torus $||T^2|| = 0$
- Higher genus surface $||\Sigma_g|| = -2 \chi(\Sigma_g) = 4 g 4$

Dimension Simplicial Volumes

 $n = 2 \qquad SV(2) = \mathbb{N}[4]$

n = 3

Dimension Simplicial Volumes

$$n = 2 \qquad SV(2) = \mathbb{N}[4]$$

$$n = 3 \qquad SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$$

Dimension Simplicial Volumes

$$n = 2 \qquad SV(2) = \mathbb{N}[4]$$

$$n = 3 \qquad SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$$

n = 4

- Hyperbolic manifolds?
- Products of surfaces?

Dimension Simplicial Volumes

$$n=2 \qquad SV(2) = \mathbb{N}[4]$$

$$n = 3 \qquad SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$$
$$n = 4$$

- - Hyperbolic manifolds? Smallest hyperbolic 4-mnfd ≥ 700
 - Products of surfaces? Smallest product is 24

Bucher [BK08]
$$||\Sigma_g \times \Sigma_h|| = \frac{3}{2} ||\Sigma_g|| \cdot ||\Sigma_h|| = \frac{3}{2} (4g - 4) \cdot (4h - 4)$$

Dimension Simplicial Volumes

$$n = 2 \qquad SV(2) = \mathbb{N}[4]$$

$$n = 3 \qquad SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$$

2

n = 4

- Hyperbolic manifolds? Smallest hyperbolic 4-mnfd ≥ 700
- Products of surfaces? Smallest product is 24

7

$$||\Sigma_{g} \times \Sigma_{h}|| = \frac{5}{2} ||\Sigma_{g}|| \cdot ||\Sigma_{h}|| = \frac{5}{2} (4g - 4) \cdot (4h - 4)$$

Is there a gap in $SV(4)$?

Dimension Simplicial Volumes

$$n = 2 \qquad SV(2) = \mathbb{N}[4]$$

$$n = 3 \qquad SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$$

n = 4
 Theorem A (H. – Löh, 2020, [HLa, HLb]):
 SV(4) contains all non-negative rational numbers and arbitrarily small transcendental, rationally independent numbers

Dimension Simplicial Volumes

 $n = 2 \qquad SV(2) = \mathbb{N}[4]$

$$n = 3$$
 $SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$

- n = 4
 Theorem A (H. Löh, 2020, [HLa, HLb]):
 SV(4) contains all non-negative rational numbers and arbitrarily small transcendental, rationally independent numbers.
- n > 4 Theorem B (H. Löh, 2020, [HLa]): If $n \ge 4$, SV(n) is dense in the non-negative real numbers.

Dimension Simplicial Volumes

 $n = 2 \qquad SV(2) = \mathbb{N}[4]$

$$n = 3$$
 $SV(3) = \mathbb{N}\left[\frac{Vol(M)}{c} \mid M \text{ is hyp } 3 - mnfd \text{ with toridal boundary}\right]$

- n = 4
 Theorem A (H. Löh, 2020, [HLa, HLb]):
 SV(4) contains all non-negative rational numbers and arbitrarily small transcendental, rationally independent numbers.
- n > 4Theorem B (H. Löh, 2020, [HLa]):If $n \ge 4$, SV(n) is dense in the non-negative real numbers.

Is $SV(4) = RC^+$ the set of non-negative right computable numbers?

Outline: Proof of Theorem A $(SV(4) \supseteq \mathbb{Q}^+)$

- 1. Construct 2-classes with l^1 norm controlled by stable commutator length
- 2. Find groups with interesting stable commutator length
- 3. From 2-classes to 4-classes using products
- 4. From 4-classes in groups to manifolds: Thom Realisation

1. Construct 2-classes with l^1 norm controlled by stable commutator length

Let X be a topological space

	l1 –norm	scl
Objects	$\alpha \in H_2(X;\mathbb{R})$	

Approximation by Surfaces

Example

1. Construct 2-classes with l^1 norm controlled by stable commutator length

Let X be a topological space

	<i>l</i> 1–norm	scl
Objects	$\alpha \in H_2(X;\mathbb{R})$	
Approximation by Surfaces	$\Phi: \Sigma \to X$, with $n(\Phi) \cdot \alpha = \Phi[\Sigma] \text{ in } H_2(X; \mathbb{R})$	
Approximation by Surfaces	$\ \alpha\ _1 = \inf \frac{-2\chi(\Sigma)}{n(\Phi)}$	

Example

1. Construct 2-classes with l^1 norm controlled by stable commutator length

	l1–norm	scl
Objects	$\alpha \in H_2(X;\mathbb{R})$	
	$\Phi: \Sigma \to X, \text{ with}$	
Approximation by Surfaces	$n(\Phi) \cdot \alpha = \Phi[\Sigma] \text{ in } H_2(X; \mathbb{R})$	
	$\ \alpha\ _1 = \inf \frac{-2\chi(\Sigma)}{n(\Phi)}$	
	$X = \Sigma_2, \alpha = [\Sigma_2]$	
Example	$\Phi = \iota a : \Sigma_2 \to X$ $-2\chi(\Sigma_2)$	
	$ \alpha \le \frac{n(1+2)}{n(\Phi)} = 4$	

1. Construct 2-classes with l^1 norm controlled by stable commutator length

	<i>l</i> 1 –norm	scl
Objects	$\alpha \in H_2(X; \mathbb{R})$	$\gamma\colon S^1\to X$
Approximation by Surfaces	$\Phi: \Sigma \to X$, with $n(\Phi) \cdot \alpha = \Phi[\Sigma]$ in $H_2(X; \mathbb{R})$	
	$\ \alpha\ _1 = \inf \frac{-2\chi(\Sigma)}{n(\Phi)}$	
Example	$X = \Sigma_2, \qquad \alpha = [\Sigma_2]$ $\Phi = id : \Sigma_2 \to X$ $-2\chi(\Sigma_2)$	
	$ \alpha \le \frac{2\pi (22)}{n(\Phi)} = 4$	

1. Construct 2-classes with l^1 norm controlled by stable commutator length

	l1 –norm	scl
Objects	$\alpha \in H_2(X; \mathbb{R})$	$\gamma\colon S^1\to X$
		$\gamma \in [\pi_1(X), \pi_1(X)]$
	$\Phi: \Sigma \to X$, with $n(\Phi) \cdot \alpha = \Phi[\Sigma]$ in $H_2(X; \mathbb{R})$	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with
Approximation by Surfaces	$\ \alpha\ _1 = \inf \frac{-2\chi(\Sigma)}{n(\Phi)}$	degree $n(\Phi)$ $scl(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$X = \Sigma_2, \qquad \alpha = [\Sigma_2]$ $\Phi = id : \Sigma_2 \to X$ $ \alpha \le \frac{-2\chi(\Sigma_2)}{n(\Phi)} = 4$	

1. Construct 2-classes with l^1 norm controlled by stable commutator length

	l1 –norm	scl
Objects	$\alpha \in H_2(X; \mathbb{R})$	$\gamma \colon S^1 \to X$
		$\gamma \in [\pi_1(X), \pi_1(X)]$
	$\Phi: \Sigma \to X$, with	$\Phi: \Sigma \to X$, were
Approximation by Surfaces	$n(\Phi) \cdot \alpha = \Phi[\Sigma] \text{ in } H_2(X; \mathbb{R})$	Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$
	$\ \alpha\ _1 = \inf \frac{-2\chi(\Sigma)}{n(\Phi)}$	scl(γ): = inf $\frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$X = \Sigma_2, \qquad \alpha = [\Sigma_2]$ $\Phi = id : \Sigma_2 \to X$	$X = \Sigma_{1,1} = \bigcirc, \gamma = \partial \Sigma_{1,1}$ $\Phi = id : \Sigma_{1,1} \to X$
	$ \alpha \le \frac{-2\chi(\Sigma_2)}{n(\Phi)} = 4$	$scl(\gamma) \leq -\frac{\chi(\Sigma_{1,1})}{2 n(\Phi)} = \frac{1}{2}$

1. Construct 2-classes with l^1 norm controlled by stable commutator length

1. Construct 2-classes with l^1 norm controlled by stable commutator length

1. Construct 2-classes with l^1 norm controlled by stable commutator length

Theorem C (H. – Löh, 2020, [HLa]): Let *G* be a finitely presented group with $H_2(G; \mathbb{R}) = 0$ and let $g \in [G, G]$ be an element in the commutator subgroup. Set

$$\tilde{G} = G_1 \star_{g1 = g2} G_2$$

where G_1 , G_2 are copies of G and g1,g1 are copies of g. Then there is an *integral* class $\alpha \in H_2(\tilde{G}; \mathbb{R})$ such that $||\alpha||_1 = 8 \cdot scl(g)$.

2. Find groups with interesting stable commutator length

SCL relates to:

- 1. Surfaces
- 2. Quasimorphisms (Bavard)
- 3. Rotation Numbers (Ghys)

SCL is computable in

- 1. free groups (Calegari)
- 2. certain amalgamated free products (Chen)
- 3. certain groups which act on the circle

2. Find groups with interesting stable commutator length

Theorem D (H. – Löh, 2020, [HLa], [HLb]): There are finitely presented groups G_{α} with $H_2(G_{\alpha}; \mathbb{R}) = 0$ and an element $g_{\alpha} \in G_{\alpha}$ such that

$$scl(g_{\alpha}) = \alpha$$
,

where

1. $\alpha \in \mathbb{Q}^+$ 2. $\alpha = \frac{\arccos(1-2^n)}{2 \cdot \pi}, n \in \mathbb{N}^-$

2. Find groups with interesting stable commutator length

Theorem D (H. – Löh, 2020, [HLa], [HLb]): There are finitely presented groups G_{α} with $H_2(G_{\alpha}; \mathbb{R}) = 0$ and an element $g_{\alpha} \in \mathcal{R}$ G_{α} such that

$$scl(g_{\alpha}) = \alpha$$
,

where

1. $\alpha \in \mathbb{Q}^+$ Universal central extension of Thompsons group T

2.
$$\alpha = \frac{\arccos(1-2^n)}{2\cdot \pi}, n \in \mathbb{N}^-$$

Certain central extension of $SL_2(\mathbb{Z} \mid \frac{1}{2})$

Proof of Theorem A: 3. From 2-classes to 4-classes using products

Theorem E (H. – Löh, 2020, [HLa]): For any 2-class $\alpha \in H_2(G; \mathbb{R})$ we have that the 4-class $\alpha \times \Sigma$ in $G \times \pi_1(\Sigma)$ has l^1 norm $||\alpha \times \Sigma||_1 = \frac{3}{2} ||\alpha||_1 \cdot ||\Sigma||_1$

for any surface Σ .

Proof:

 \leq immediate from [BK08],

 \geq via bounded cohomology, construct extremal cocycle analogous to [BK08].

4. From 4-classes in groups to manifolds: Thom Realisation

Theorem (Thom):

For any integral 4-class $\alpha \in H_4(G; \mathbb{R})$ in a finitely presented group G there is a 4manifold M such that

 $||M|| = ||\alpha||_1$

Proof of Theorem A: Summary

- 1. Construct 2-classes with l^1 norm controlled by stable commutator length
- 2. Find groups with interesting stable commutator length
- 3. From 2-classes to 4-classes using products
- 4. From 4-classes in groups to manifolds: Thom Realisation

Proof of Theorem A: Summary

- 1. Construct 2-classes with l^1 norm controlled by stable commutator length \checkmark
- 2. Find groups with interesting stable commutator length
- 3. From 2-classes to 4-classes using products 🗹
- 4. From 4-classes in groups to manifolds: Thom Realisation 🗹

Proof of Theorem A: Summary

- 1. Construct 2-classes with l^1 norm controlled by stable commutator length \checkmark
- 2. Find groups with interesting stable commutator length
- 3. From 2-classes to 4-classes using products 🗹
- 4. From 4-classes in groups to manifolds: Thom Realisation 🗹

Computable numbers

 $\alpha \in \mathbb{R}$ such that

Right Computable numbers

 $\alpha \in \mathbb{R}$ such that

Right Computable numbers

 $\alpha \in \mathbb{R}$ such that

What is *SV*(4)? *SV*(4)

\supseteq

SCL

• $SCL = \{ scl(g) \mid g \in [G,G], G finitely presented, H_2(G; \mathbb{R}) = 0 \}$

- $SCL = \{ scl(g) \mid g \in [G,G], G finitely presented, H_2(G; \mathbb{R}) = 0 \}$
- $SCL^{rf} = \{ scl(g) \mid g \in [G,G], G recursively finite \}$
- *RC*⁺ is the set of right computable numbers

- $SCL = \{ scl(g) \mid g \in [G,G], G finitely presented, H_2(G; \mathbb{R}) = 0 \}$
- $SCL^{rf} = \{ scl(g) \mid g \in [G, G], G recursively finite \}$
- *RC*⁺ is the set of right computable numbers

- $SCL = \{ scl(g) \mid g \in [G,G], G \text{ finitely presented}, H_2(G; \mathbb{R}) = 0 \}$
- $SCL^{rf} = \{ scl(g) \mid g \in [G,G], G recursively finite \}$
- *RC*⁺ is the set of right computable numbers

References

- [BK08]: Michelle Bucher-Karlsson. The simplicial volume of closed manifolds covered by H × H . J. Topol., 1(3):584–602, 2008.
- [HLa]: N Heuer, C Löh. "The spectrum of simplicial volume." Inventiones mathematicae (2020): 1-46
- [HLb] N Heuer, C Löh. "Transcendental simplicial volumes." Annales de l'Institut Fourier, to appear
- [H]: N Heuer. "The full spectrum of scl on recursively presented groups." Geometriae Dedicata, to appear