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Volume wish-list:

1. VolM)eR=0

2. If M and N are n manifolds and f: M — N is continuous, then
|deg(M)|Vol(N) < Vol(M)

3. Vol(M#N) = Vol(M) + Vol(N)

4. Vol(M X N) =Vol(M) - Vol(N)

5. Vol(M) reflects honest Riemannian volume in special cases



Definition Simplicial Volume

Def (Gromov, 1984):1f M is an orientable, closed, connected (occ) n-
manifold. Define

[IM]]: = [I[M]]]
the simplicial volume, where [M] is the fundamental class of M.



Definition Simplicial Volume

Def (Gromov, 1984): If M is an orientable, closed, connected (occ) n-
manifold. Define

[IM]]: = [I[M]]]
the simplicial volume, where [M] is the fundamental class of M.

Def:Let X be a topological space and let « € Hn(X; R) be a class in
singular homology. Then set

lla||; == inf{ Y|ac |; a = Yac -0}
the [ norm of «a.
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Properties of Simplicial Volume
Vol(M) = ||M||?
Volume wish-list:

Z|IM||eR=>04

2. If M and N are n manifolds and f: M — N is continuous, then
deg(M)| |IN]| < [|M]]

3. ||M#N]|| = ||M]]| + ||N||(+ amenable glueings)
4.||M x N|| =|M]] - [IN]| X

n+m
it i< v vt < (U7 ) g

5. ||M|| reflects honest Riemannian volume in special cases
M hyperbolic: ||M|| = VoltM)

M amenable: ||M|| = O. "
|[M]]|

(n—1\1.n!

, C,only depends on dimension of M

< minVol(M), n: dimension of M.



Spectrum of Simplicial Volume

Characterize
SV(n) = {||IM|| | M is occ n —manifold}
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Characterize
SV(n) = {||IM]|| | M is occ n —manifold}

A priori:
* SV (n) is countable
cifa,b € SV(n) thena + b € SV(n)
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Dimension Simplicial Volumes
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* Sphere
* Torus
* Higher genus surface
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Dimension Simplicial Volumes
n=2 SV(2) = N[4]

* Sphere ||S%|| =0
* Torus ||T?||=0
* Higher genus surface |[2,|| = -2 x(Z,) =49 — 4
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Dimension Simplicial Volumes
n=~=2 SV(2) = N[4]
n=3 SV(3) =N [VOIEM) ‘ M is hyp 3 — mnfd with toridal boundary]
n=4

* Hyperbolic manifolds? Smallest hyperbolic 4-mnfd = 700
* Products of surfaces? Smallest product is 24

3 3
Bucher [BK08]  [[Zg XZp|| = S Zg[| - [IZ4]] = 5 (4g —4) - (4h — 4)



SV(n) = {||IM|| | M is occ n —manifold}.

Dimension Simplicial Volumes
n=2 SV(2) = N[4]
n=3 SV(3) =N [VOZEM) ‘ M is hyp 3 — mnfd with toridal boundary]
n=4

* Hyperbolic manifolds? Smallest hyperbolic 4-mnfd = 700
* Products of surfaces? Smallest product is 24

3 3
Bucher [BK08]  [[Zg XZp|| = S Zg[| - [IZ4]] = 5 (4g —4) - (4h — 4)

Is there a gap in SV (4)?
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Dimension Simplicial Volumes
n=2 SV(2) = N[4]
n=3 SV(3) =N [VOIEM) ‘ M is hyp 3 — mnfd with toridal boundary]
n=4%4 Theorem A (H. — Loh, 2020, [HLa, HLb]):

SV (4) contains all non-negative rational numbers and arbitrarily small
transcendental, rationally independent numbers
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Dimension Simplicial Volumes
n=~=2 SV(2) = N[4]
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Outline: Proof of Theorem A (SV(4) 2 (Q2+)

. Construct 2-classes with [ norm controlled by stable commutator
length

Find groups with interesting stable commutator length
From 2-classes to 4-classes using products

From 4-classes in groups to manifolds: Thom Realisation
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1. Construct 2-classes with I1 norm controlled by stable commutator length

Let X be a topological space

[1 —norm scl
Objects a € H,(X; R) y:St—- X
d: ¥ - X, with

n(®) - a = ®[2] in H,(X; R)
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Proof of Theorem A:
1. Construct 2-classes with I1 norm controlled by stable commutator length

Let X be a topological space

[1 —norm scl

Objects a € H,(X; R) y:St—- X

Y € [m(X), 1 (X)]

d: Y - X, with d:X - X, were
n(®) - a = e[X] in H,(X; R) ® on 0X restricts to y with
Approximation by Surfaces degree n(®)
—2x(2) —x(X)
= inf : = inf
||a||; = in (@) scl(y): = in 2 n(®)

X = 22' a = [22]
Example b=id:%,—-X
—2x(Z2) — 4
n(®)

lall =



Proof of Theorem A:

1. Construct 2-classes with I1 norm controlled by stable commutator length

Let X be a topological space

[1 —norm scl
Objects a € H,(X; R) y:St—- X
y € [m(X), m(X)]
d: Y - X, with d:X - X, were
n(®) - a = e[Z] in H,(X; R) ® on 9% restricts to y with
Approximation by Surfaces degree n(®)
—2x(2) —x(X)
= inf [(y): = inf
lall, = inf—22S scl(y): = inf 37 5
X=3%, a=[5)] X=3,=70), y=0%;
Example b=id:%,—-X b=id:2;;—X
—2x(,) xEi) 1
< = [ < —-——"= _
lall=s—7y— =4 s == 3



Proof of Theorem A:
1. Construct 2-classes with I1 norm controlled by stable commutator length

/

(05

\




Proof of Theorem A:
1. Construct 2-classes with I1 norm controlled by stable commutator length

“ 12, 1]

/ N\

4-scl(yy) + 4 - scl(yy)
\/ " +4 .
O 2



Proof of Theorem A:
1. Construct 2-classes with I1 norm controlled by stable commutator length

Theorem C (H. — Loh, 2020, [HLa]):

Let G be a finitely presented group with
H,(G;R) =0 and let g € [G,G] be an
element in the commutator subgroup.
Set

~

/ G=0G1%4 _ 420,

where G;, G, are copies of G and gl,g1
>, are copies of g. Then there is an integral
L class @ € H,(G; R) such that
)/1\ /Vz lla|]; = 8- scl(g).



Proof of Theorem A:
2. Find groups with interesting stable commutator length

SCL relates to:

1. Surfaces

2. Quasimorphisms (Bavard)
3. Rotation Numbers (Ghys)

SCL is computable in

1. free groups (Calegari)

2. certain amalgamated free products (Chen)
3. certain groups which act on the circle



Proof of Theorem A:
2. Find groups with interesting stable commutator length

Theorem D (H. — Loh, 2020, [HLa], [HLb]):

There are finitely presented groups G, with H,(G,; R) = 0 and an element g, €
G, such that

scl(g,) = «a,
where

1. aeqQ”

2 g = arccos(l—zn)’ neN"

2-TC




Proof of Theorem A:
2. Find groups with interesting stable commutator length

Theorem D (H. — Loh, 2020, [HLa], [HLb]):

There are finitely presented groups G, with H,(G,; R) = 0 and an element g, €
G, such that

scl(g,) = «a,
where

1. aeqQ”

Universal central extension of Thompsons group T

arccos(1-2") —

_ . . 1
2 a= - ,n €N Certain central extension of SL,(Z H)




Proof of Theorem A:
3. From 2-classes to 4-classes using products

Theorem E (H. — L6h, 2020, [HLa]):
For any 2-class @ € H,(G; R) we have that the 4-class aXX in G Xm{(Z) has [! norm

3
[laxZ||y = [lally - [IZ]];
for any surface .

Proof:

< immediate from [BK08],
> via bounded cohomology, construct extremal cocycle analogous to [BKO8].



Proof of Theorem A:
4. From 4-classes in groups to manifolds: Thom Realisation

Theorem (Thom):
For any integral 4-class @« € H,(G; R) in a finitely presented group G there is a 4-
manifold M such that

IM|| = [|e]|



=W e

Proof of Theorem A:
Summary
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Proof of Theorem A:
Summary

Construct 2-classes with I norm controlled by stable commutator length
Find groups with interesting stable commutator length

From 2-classes to 4-classes using products
From 4-classes in groups to manifolds: Thom Realisation

||



Computable numbers

a € R such that

Input: ! Out:
p = 2 ﬁ

Tolerancee >0 = . - Interval [Q» q-T €]
with a € [q,q+€]




Computable numbers

a € R such that

Input: g Out:
p = 2 ﬁ

Tolerancee >0 =—™> ... = Interval [q, q + €]
with a € [q,g+€]

Example: a =mn
3,3.5]




Right Computable numbers

a € R such that

Input: ! Out:

= ﬁ
IntegerneN T .. mm Number a,, = 0
s.t.
(a,,),, descending
s.t. a = lim, «,,




Input:
Integern € N

Right Computable numbers

a € R such that

LTI

Example: a =mn

-
=
®
|

2

Out:

> Number a, =0

S.t.
(a,,),, descending
st.a =lim,a,

|



What is SV (4)?

SV(4)
-

SCL

* SCL = {scl(g) | g € |G,G],G finitely presented, H,(G; R) = 0}



What is SV (4)?

SV(4)
-

RC SCL

|
U

H., [H] - — immediate

SCL!

* SCL = {scl(g) | g € |G,G],G finitely presented, H,(G; R) = 0}
« SCL™T = {scl(g) | g € [G,G], G recursively finite}
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