RAAGs and SCL

Nicolaus Heuer, University of Cambridge joint with Lvzhou (Joe) Chen, UT Austin

> Algebra, Geometry and Topology seminar 'at' Heriot-Watt November 3rd, 2020

Stable Commutator Length

	elements	chains
Objects	$\gamma\colon S^1\to X$	$\gamma_i: S^1 \to X \text{ for } 1 \leq i \leq m$
	$\gamma \in [\pi_1(X), \pi_1(X)]$	$\gamma_1 \cdots \gamma_m \in [\pi_1(X), \pi_1(X)]$

scl

Example

Stable Commutator Length

	elements	chains
Objects	$\gamma\colon S^1\to X$	$\gamma_i: S^1 \to X \text{ for } 1 \leq i \leq m$
	$\gamma \in [\pi_1(X), \pi_1(X)]$	$\gamma_1 \cdots \gamma_m \in [\pi_1(X), \pi_1(X)]$
	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree	$\Phi: \Sigma \to X$, were
	$n(\Phi)$	Φ on $\partial\Sigma$ restricts to $~\gamma$ with
scl		degree $n(\Phi)$
	$scl(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$	
	$2n(\Phi)$	$scl(\gamma_1 + \dots + \gamma_n) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
		$2n(\Phi)$

Example

Stable Commutator Length

	elements	chains
Objects	$\gamma \colon S^1 \to X$	$\gamma_i: S^1 \to X \text{ for } 1 \leq i \leq m$
	$\gamma \in [\pi_1(X), \pi_1(X)]$	$\gamma_1 \cdots \gamma_m \in [\pi_1(X), \pi_1(X)]$
	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with
scl		degree $n(\Phi)$
	$scl(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$	$scl(\gamma_1 + \dots + \gamma_n) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$X = \Sigma_{1,1} = \qquad \qquad \gamma = \partial \Sigma_{1,1}$	$X = \Sigma = \bigcap \qquad \gamma = \partial \Sigma$
	$\Phi = id : \Sigma_{1,1} \to X$	$\Phi = id : \Sigma \to X$
	$scl(\gamma)$: = $\inf \frac{-\chi(\Sigma)}{2n(\Phi)} \le -\frac{-1}{2} = \frac{1}{2}$	$scl(\gamma) \leq -\frac{-1}{2} = \frac{1}{2}$

Basic Properties

- Monotone: If $\Phi: G \to H$ is homomorphism then $scl_G(g) \ge scl_H(\Phi(g))$. Same for chains.
- Preserved under automorphisms.
- Preserved under conjugation.
- Invariant under retractions.
- Relationship between chains and elements: if g, $h \in G$:

$$scl(g+h) = scl(g t h t^{-1}) + \frac{1}{2}$$

in $G \star \langle t \rangle$.

• 'Linear Norm': $scl(g^n) = n \cdot scl(g)$, $scl(c_1 + c_2) \le scl(c_1) + scl(c_2)$.

RAAGs

 Γ : a graph with vertices V and edge set E.

 $A(\Gamma) = \langle v \in V \mid [v, w], \text{ for every } (v, w) \in E \rangle$

RAAGs and Graph Groups

Γ: a graph with vertices V and edge set E. +groups $\{G_v\}, \forall v ∈ V$

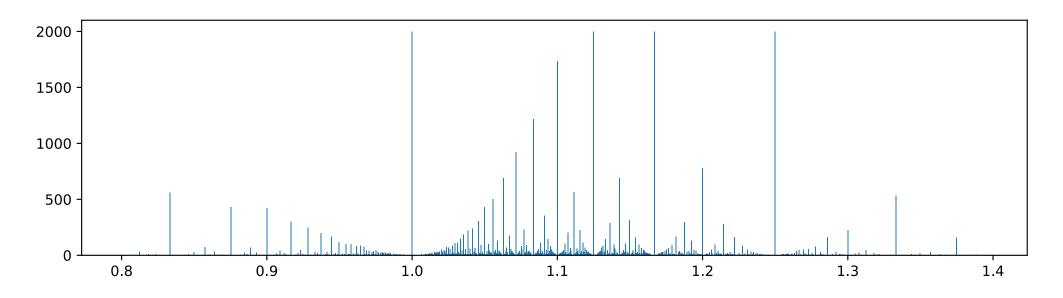
 $\begin{array}{l} \mathsf{A}(\Gamma) = \langle v \in V \mid [v,w], \ for \ every \ (v,w) \in E \ \rangle \\ \mathsf{G}(\Gamma) = \langle g_v \in G_v \mid [g_v,g_w], \ for \ every \ (v,w) \in E \ \rangle \end{array}$

RAAGs and Graph Groups

Γ: a graph with vertices V and edge set E. +groups $\{G_v\}, \forall v ∈ V$

 $\begin{array}{l} \mathsf{A}(\Gamma) = \langle v \in V \mid [v,w], \ for \ every \ (v,w) \in E \ \rangle \\ \mathsf{G}(\Gamma) = \langle g_v \in G_v \mid [g_v,g_w], \ for \ every \ (v,w) \in E \ \rangle \end{array}$

SCL on Free Groups

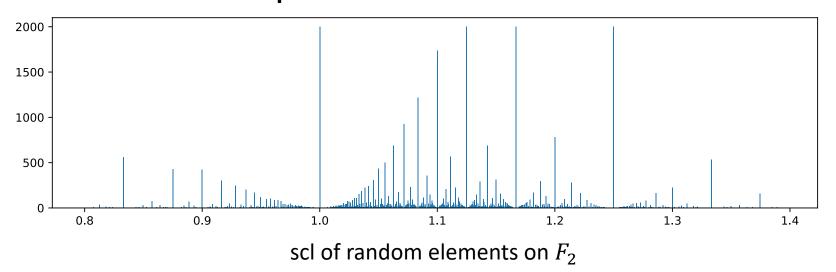


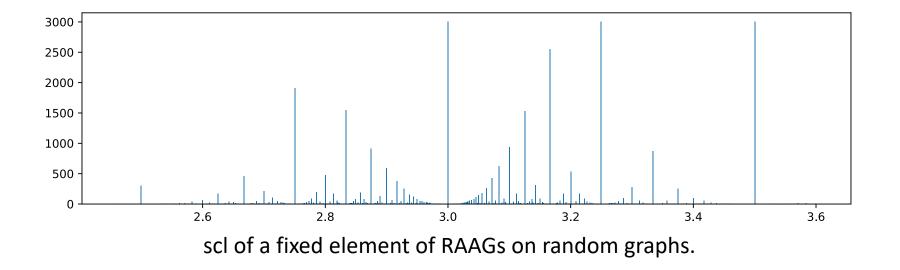
Histogram of scl for 50'000 random words in F_2 of length 24.

	Free Group	RAAGs
Gaps	$scl(g) \ge \frac{1}{2}$ (Duncan-Howie '91)	$scl(g) \ge \frac{1}{2}$ (H. '18) $g \in A(\Gamma)$
g: element c: chain	$scl(c) \ge \frac{1}{8}$ (Tao '16) sharp?	?
Spectrum	 Second gap? Every rational ≥ 1? 	?
Distribution	?	?
Complexity	scl: Computable in polynomial time (Calegari) cl: is NP complete. (H. '20)	? cl: NP Hard

	Free Group	RAAGs
Gaps	$scl(g) \ge \frac{1}{2}$ (Duncan-Howie '91)	$scl(g) \ge \frac{1}{2}$ (H. '18) $g \in A(\Gamma)$
g: element c: chain	$scl(c) \ge \frac{1}{8}$ (Tao '16) sharp?	$scl(g) \ge \frac{1}{2} (H. '18) g \in A(\Gamma)$ $scl(c) \ge \frac{1}{24 \Delta(\Gamma) + 12}$ And $\exists d$, chain such that $scl(d) \le \frac{1}{\Delta(\Gamma)}.$
Spectrum	 Second gap? Every rational ≥ 1? 	Every rational ≥ 1 is scl of some RAAG chain. (with Quasimorphisms!)
Distribution	?	Related to 'Fractional Stability Number'
Complexity	scl: Computable in polynomial time (Calegari) cl: is NP complete. (H. '20)	scl: NP Hard cl: NP Hard

Upshot: SCL vs FSN





SCL Gaps

Known results:

- Free groups (Duncan-Howie, Tao)
- Amalgamated free products and graph of groups. (Chen H.)
- Hyperbolic Groups (Fujiwara Calegari)
- Mapping Class Groups (Bestvina Bromberg Fujiwara)
- BS groups and certain amalgamated free products (Clay– Louwsma – Forester)

 $G = F_2 \times F_2 = \langle a, b \rangle \times \langle c, d \rangle$

• scl(a + b + AB) = scl(b + a + AB)

Chains c, c' can have the same scl for 'trivial' reasons:

• Reordering terms,

 $G = F_2 \times F_2 = \langle a, b \rangle \times \langle c, d \rangle$

- scl(a + b + AB) = scl(b + a + AB)
- scl(a + A) = scl(e) = 0

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,
- Adding $g + g^{-1}$,

 $G = F_2 \times F_2 = \langle a, b \rangle \times \langle c, d \rangle$

- scl(a + b + AB) = scl(b + a + AB)
- scl(a + A) = scl(e) = 0
- scl(a + a b A + AB) = scl(a + b + AB)

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,
- Adding $g + g^{-1}$,
- Conjugating terms,

 $G = F_2 \times F_2 = \langle a, b \rangle \times \langle c, d \rangle$

- scl(a + b + AB) = scl(b + a + AB)
- scl(a + A) = scl(e) = 0
- scl(a + a b A + AB) = scl(a + b + AB)
- $scl(a^2 + A A) = scl(a + a + A + A) = 0$

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,
- Adding $g + g^{-1}$,
- Conjugating terms,
- Replacing a term g^m by $m \cdot g$, and

 $G = F_2 \times F_2 = \langle a, b \rangle \times \langle c, d \rangle$

- scl(a + b + AB) = scl(b + a + AB)
- scl(a + A) = scl(e) = 0
- scl(a + a b A + AB) = scl(a + b + AB)
- $scl(a^2 + A A) = scl(a + a + A + A) = 0$
- scl(a + c + AC) = scl(a + c + A + C) = 0

Chains c, c' can have the same scl for 'trivial' reasons:

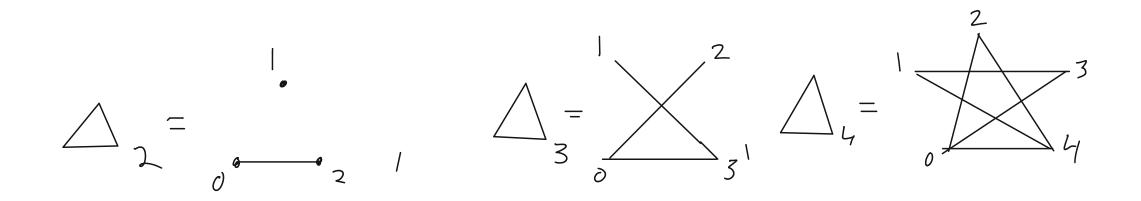
- Reordering terms,
- Adding $g + g^{-1}$,
- Conjugating terms,
- Replacing a term g^m by $m \cdot g$, and
- Replacing $g \cdot h$ by g + h, if g and h commute.

Definition: c and c' are **equivalent** if the same up to the above manipulations.

Graph Products: Warmup

Definition: A chain in a graph product is a **vertex chain** if all its terms are supported on the vertex groups.

Definition: The **opposite path of length m**, Δ_m is the graph on vertices $\{0, ..., m\}$ with edges whenever $|i - j| \ge 2$.



Graph Products: Warmup

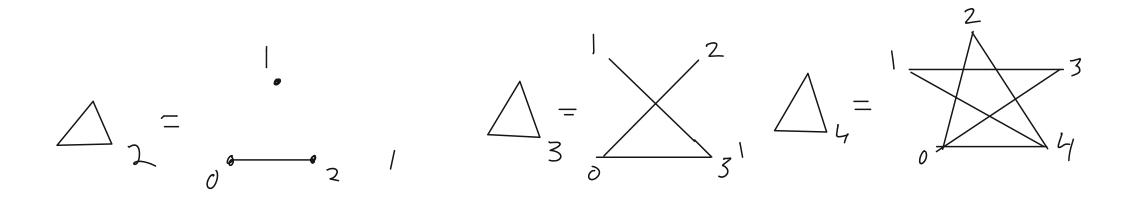
Definition: A chain in a graph product is a **vertex chain** if all its terms are supported on the vertex groups.

Definition: The **opposite path of length m**, Δ_m is the graph on vertices $\{0, ..., m\}$ with edges whenever $|i - j| \ge 2$.

For a graph Γ ,

$$\Delta(\Gamma) = \max\{m \mid \Delta_m \text{ is a full subgraph of } \Gamma\},\$$

denotes the **opposite path length of** Γ . In particular, $\Delta(\Delta_m) = m$.



Main Result

Theorem (Chen – H. '20) Let Γ be a graph and $G(\Gamma)$ be a graph product and let c be a chain on $G(\Gamma)$.

• If
$$scl(c) \leq \frac{1}{12 \Delta(\Gamma) + 24}$$
, then c is equivalent to a vertex chain.

Main Result

Theorem (Chen – H. '20)

Let Γ be a graph and $G(\Gamma)$ be a graph product and let c be a chain on $G(\Gamma)$.

- If $scl(c) \leq \frac{1}{12 \Delta(\Gamma) + 24}$, then c is equivalent to a vertex chain.
- There is a chain d in $G(\Gamma)$ which is not equivalent to a vertex chain with $scl(d) \leq \frac{1}{\Lambda(\Gamma)}$.

Main Result

Theorem (Chen – H. '20)

Let Γ be a graph and $G(\Gamma)$ be a graph product and let c be a chain on $G(\Gamma)$.

- If $scl(c) \leq \frac{1}{12 \Delta(\Gamma) + 24}$, then c is equivalent to a vertex chain.
- There is a chain d in $G(\Gamma)$ which is not equivalent to a vertex chain with $scl(d) \leq \frac{1}{\Lambda(\Gamma)}$.
- There is an algorithm to compute scl on vertex chains.

Overview of Proof of the Gaps Result

- 1. Gap for amalgamated free products $G = A \star_C B$.
 - No long overlaps:

Let c = g + h be a chain such that there is no N such that g^N subword of h^∞ : Gap of $\frac{1}{12N}$.

- Def: H < G is :
 - Malnormal: if for all $\forall g \in G \setminus H$, $h \in H$:, $g h g^{-1} \notin H$.
 - Central: $\forall g \in G \setminus H, H \in H$: $g h g^{-1} = h$.
 - CM subgroup: $\forall g \in G, \exists g' \in H g H$: for all $h \in H$: either $g'h g'^{-1} = h$, or $g'h g'^{-1} \notin H$.

'Theorem': If C < G is a CM subgroup + centralizer (of centralizer)^N is CM subgroup. Then G has no long overlaps of length N.

2. Gaps for Graph Groups. Write $G(\Gamma) = G(st(v)) \star_{Lk(v)} G(\Gamma \setminus v)$.

Chains with small scl

Let d_0, \ldots, d_m be the generators of Δ_m .

Define $g_{i,j} = d_i \cdots d_j$. Then

Claim:

 $g_{0,m}^{m} = g_{0,m-1}^{m}c$, and $g_{1,m}^{m} = g_{1,m-1}^{m}c$.

Thus: $d = g_{0,m} - g_{0,m-1} - g_{1,m} + g_{1,m-1}$

$$scl(m \cdot d) = scl(g_{0,m}^{m} - g_{0,m-1}^{m} - g_{1,m}^{m} + g_{1,m-1}^{m})$$

$$scl(m \cdot d) = scl(g_{0,m}^{m} - g_{0,m-1}^{m} + c - g_{1,m}^{m} + g_{1,m-1}^{m} - c)$$

$$scl(m \cdot d) \le scl(g_{0,m}^{m} - g_{0,m-1}^{m} + c) + scl(g_{1,m}^{m} - g_{1,m-1}^{m} + c)$$

$$scl(m \cdot d) \le 1$$

$$scl(d) \leq \frac{1}{m}$$

SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c = \sum_{v} g_{v}$ where $G_{v} = F(a_{v}, b_{v})$ and $g_{v} = [a_{v}, b_{v}]^{2}$, i.e. $scl(g_{v}) = 1$. What is scl(c)? Call it $s(\Gamma)$.

SCL on vertex chains

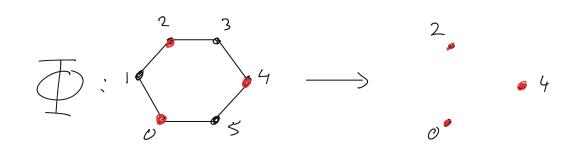
Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c = \sum_{v} g_{v}$ where $G_{v} = F(a_{v}, b_{v})$ and $g_{v} = [a_{v}, b_{v}]^{2}$, i.e. $scl(g_{v}) = 1$. What is scl(c)? Call it $s(\Gamma)$.

Examples:

Γ	$s(\Gamma)$
Complete graph?	1
Graph on n vertices without edges?	n
\bigcirc	?
$\mathbf{\hat{\Box}}$?

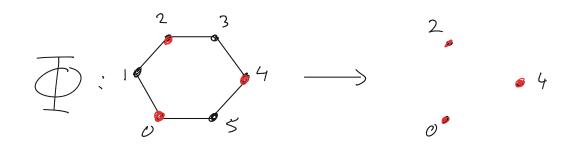
Special Case: **O**

Lower bound:



Special Case: 🔿

Lower bound:



Generally: $S \subset \Gamma$ is called **stable**, if no vertices in S are connected. Call $sn(\Gamma)$ the largest size of a maximal set (also: independence number, stability number).

 $s(\Gamma) \ge sn(\Gamma).$ $s(\bigcirc) \ge 3$

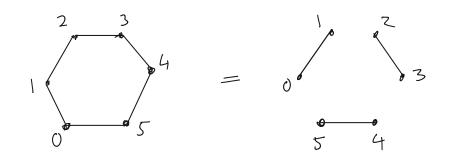
Special Case: **O**

Upper bound:



Special Case: O

Upper bound:



Generally: A clique cover of Γ is a decomposition of Γ into cliques. A clique cover number ccn(Γ) is the smallest number of cliques need to cover Γ .

 $ccn(\Gamma) \ge s(\Gamma).$ $3 \ge s(\bigcirc)$

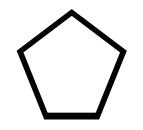
SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c = \sum_{v} g_{v}$ where $G_{v} = F(a_{v}, b_{v})$ and $g_{v} = [a_{v}, b_{v}]^{2}$, i.e. $scl(g_{v}) = 1$. What is scl(c)? Call it $s(\Gamma)$.

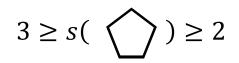
Examples:

Γ	$s(\Gamma)$
Complete graph?	1
Graph on n vertices without edges?	n
\bigcirc	3
$\mathbf{\hat{\Box}}$?

Special Case:



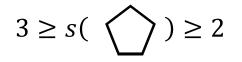
 $ccn(\Gamma) \ge s(\Gamma) \ge sn(\Gamma).$



Special Case:

$$\bigcirc$$

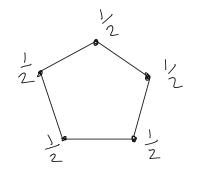
$$ccn(\Gamma) \ge s(\Gamma) \ge sn(\Gamma).$$



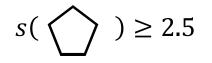
Definition: A **fractional stable set of** Γ is a collection $\{s_v\}$ of non-negative real numbers for every $v \in V$, such that for every clique $C \subset \Gamma: \sum_{v \in C} s_v \leq 1$.

$$fsn(\Gamma) = max \sum s_v,$$

where maximum is taken over every fractional stable set.



 $s(\Gamma) \geq fsn(\Gamma).$



Special Case:

$$\bigcirc$$

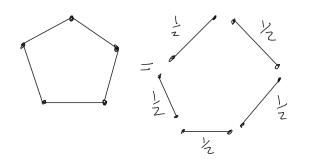
$$ccn(\Gamma) \ge s(\Gamma) \ge sn(\Gamma).$$

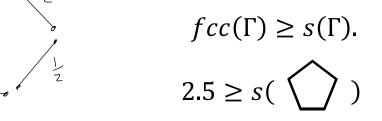
 $3 \ge s(\bigcirc) \ge 2$

Definition: A **fractional clique cover of** Γ is a collection $\{s_C\}$ of non-negative real numbers for every clique c of Γ , such that for every vertex $v \in V$: $\sum_{v \in C} s_c \ge 1$.

$$fcc(\Gamma) = min \sum s_{C},$$

where minimum is taken over all fractional clique numbers.





SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c = \sum_{v} g_{v}$ where $G_{v} = F(a_{v}, b_{v})$ and $g_{v} = [a_{v}, b_{v}]^{2}$, i.e. $scl(g_{v}) = 1$. What is scl(c)? Call it $s(\Gamma)$.

Examples:

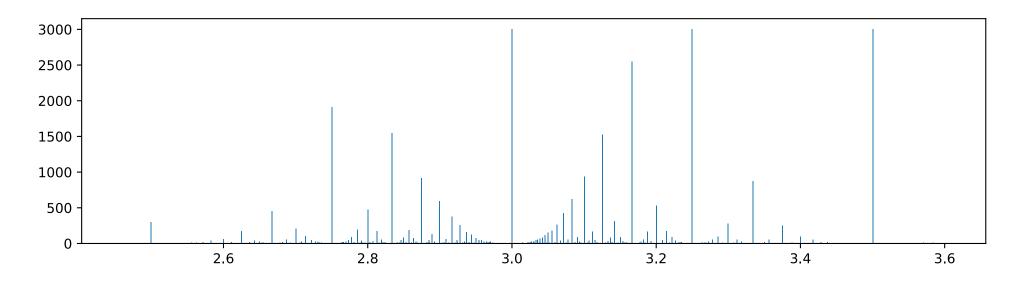
Γ	$s(\Gamma)$
Complete graph?	1
Graph on n vertices without edges?	n
\bigcirc	3
$\mathbf{\hat{\Box}}$	2.5

Fractional Stability Number

Theorem (Chen – H. '20): For every graph Γ , $fsn(\Gamma) = s(\Gamma) = fcc(\Gamma)$.

Fractional Stability Number

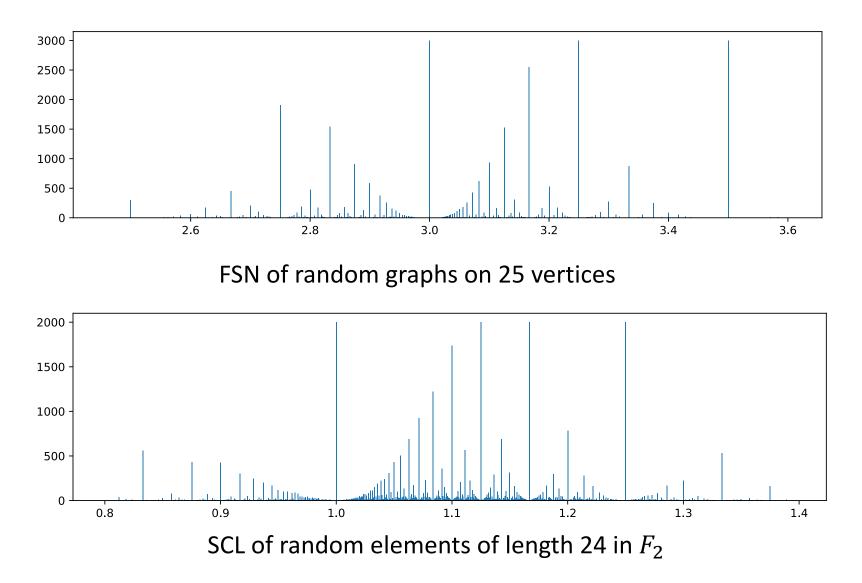
Theorem (Chen – H. '20): For every graph Γ , $fsn(\Gamma) = s(\Gamma) = fcc(\Gamma)$.



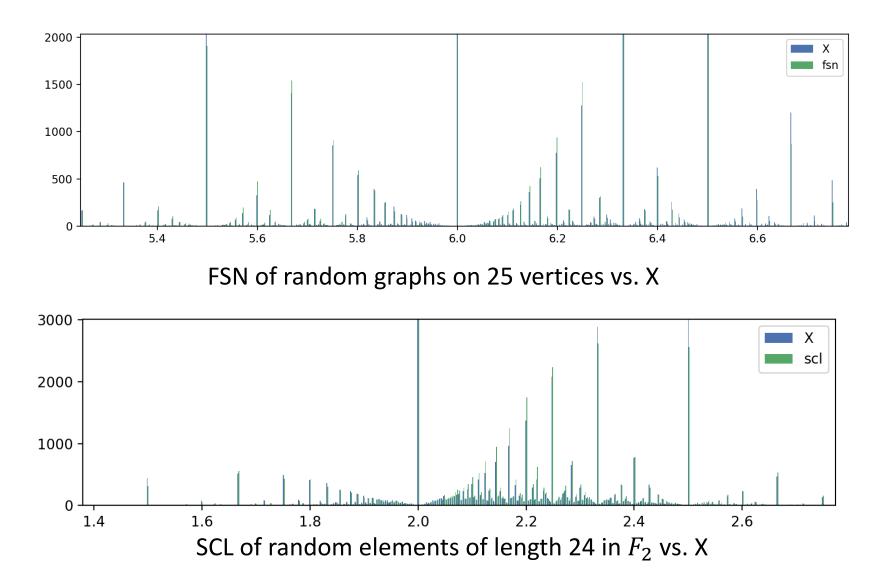
We have:

- fsn(K(n,m)) = n/m, where K(n,m) is the opposite Kneser graph, thus every rational ≥ 1 .
- *fsn* is NP hard (Subhash Khot)
- Relationship to (the better studied) Fractional Chromatic Number.

Modelling SCL and FSN



Modelling SCL and FSN



X vs SCL and FSN

- 1. Choose with some probability an integer *n*
- 2. Choose a binomal random variable around a fixed mean μ

X vs SCL and FSN

- 1. Choose with some probability an integer *n*
- 2. Choose a binomal random variable around a fixed mean μ

Choose $X(d, \beta, \mu, c_1, c_2)$ as follows:

- 1. Choose an integer n with probability proportional to $n^{(1-n^{\beta}) \cdot d}$
- 2. Let N_n be the random variable with distribution $N(\mu, c_1 \cdot n^{c_2})$ and round to nearest element in $\frac{1}{n}Z$

Question/Conjecture: Is there a natural distribution which models both SCL and FSN?

Open Questions

- 1. Is scl computable (and rational) on RAAGs?
- 2. What is the distribution of scl?
- 3. Is there a scl gap for special groups?

End

Quasimorphisms

Definition: A map $\phi: G \rightarrow R$ is a **homomorphism** if

for all $g, h \in G$:

 $|\phi(g) + \phi(h) - \phi(gh)| = 0$

Quasimorphisms

Definition: A map $\phi: G \to R$ is a **quasimorphism** if there is a C > 0, s.t. for all $g, h \in G$:

 $|\phi(g) + \phi(h) - \phi(gh)| \le C.$

Quasimorphisms!

Definition: A map $\phi: G \to R$ is a **quasimorphism** if there is a C > 0, s.t. for all $g, h \in G$:

 $|\phi(g) + \phi(h) - \phi(gh)| \le C.$

- $D(\phi)$: 'defect': smallest such C.
- ϕ is homogeneous, if $\phi(g^n) = n \cdot \phi(g)$

Quasimorphisms!

Definition: A map $\phi: G \to R$ is a **quasimorphism** if there is a C > 0, s.t. for all $g, h \in G$:

 $|\phi(g) + \phi(h) - \phi(gh)| \le C.$

- $D(\phi)$: 'defect': smallest such C.
- ϕ is homogeneous, if $\phi(g^n) = n \cdot \phi(g)$

Theorem (Bavard, Calegari): For every $g \in [G, G]$ (c, chain):

$$scl(g) = \sup_{\phi} \frac{\phi(g)}{2 D(\phi)}$$

where the supremum is taken over all homogeneous quasimorphisms.

FSN and quasimorphisms

- Given: $c = \sum_{v} c_{v}$, such that $scl(c_{v}) = 1$.
- Let $\phi_v: G_v \to R$ be a collection of extremal quasimorphisms to c_v for every $v \in V$.
- $\{s_v\}_v$ be the maximal fractional stable set. Then:

$$\phi(g) = \sum s_{v} \cdot \phi_{v}(g)$$

is an extremal quasimorphism for c, for g cyclically reduced.

End

	Algebraic	Geometric
Objects	$g \in [G,G]$	
Invariants	$cl(g) := \min\{n \mid g = [x_1, y_1] \cdots [x_n, y_n]\}$ $scl(g) \coloneqq \lim_{\{n \to \infty\}} cl(g^n)/n$	

Example

	Algebraic	Geometric
Objects	$g \in [G, G]$	
Invariants	$cl(g) := \min\{n \mid g = [x_1, y_1] \cdots [x_n, y_n]\}$ $scl(g) \coloneqq \lim_{\{n \to \infty\}} cl(g^n)/n$	
Example	$G = F_2, g = [a, b]$ cl([a, b]) = 1 $cl([a, b]^3) = 2$	

$$cl([a,b]^{3}) = 2$$

$$cl([a,b]^{n}) = \lceil \frac{n+1}{2}$$

$$scl([a,b]) = \frac{1}{2}$$

	Algebraic	Geometric
Objects	$g \in [G, G]$	$\gamma\colon S^1\to X$
		$\gamma \in [\pi_1(X), \pi_1(X)]$
Invariants	$cl(g) := \min\{n \mid g = [x_1, y_1] \cdots [x_n, y_n]\}$	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$
Invariants	$scl(g) \coloneqq \lim_{\{n \to \infty\}} cl(g^n)/n$	$scl(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$G = F_2, g = [a, b]$	
Example	cl([a, b]) = 1	
	$cl([a,b]^3) = 2$	
	$cl([a,b]^n) = \lceil \frac{n+1}{2} \rceil$ $scl([a,b]) = \frac{1}{2}$	
	$scl([a,b]) = \frac{1}{2}$	

	Algebraic	Geometric
Objects	$g \in [G, G]$	$\gamma\colon S^1\to X$
		$\gamma \in [\pi_1(X), \pi_1(X)]$
Invariants	$cl(g) := \min\{n \mid g = [x_1, y_1] \cdots [x_n, y_n]\}$	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$
	$scl(g) \coloneqq \lim_{\{n \to \infty\}} cl(g^n)/n$	$scl(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$G = F_2, g = [a, b]$ $cl([a, b]) = 1$	$X = \Sigma_{1,1} = \qquad \qquad \gamma = \partial \Sigma_{1,1}$
	$cl([a, b]^3) = 2$ $cl([a, b]^n) = [\frac{n+1}{n-1}]$	$\Phi = id : \Sigma_{1,1} \to X$
	$cl([a,b]^n) = \lceil \frac{n+1}{2} \rceil$ $scl([a,b]) = \frac{1}{2}$	$\operatorname{scl}(\gamma) := \operatorname{inf} \frac{-\chi(\Sigma)}{2 n(\Phi)} \le -\frac{-1}{2} = \frac{1}{2}$

	Algebraic	Geometric
Objects	$c = g_1 + \dots + g_n \text{ s.t.}$ $g_1 \cdots g_m \in [G, G]$	

$$cl(g_1 + \dots + g_m) = \min \{cl(t_1g_1t_1^{-1} \cdots t_mg_mt_m^{-1})\}$$

Invariants

$$scl(g_1 + \dots + g_m) \coloneqq \lim_{\{n \to \infty\}} cl(g_1^n + \dots + g_m^n)/n$$

Example

	Algebraic	Geometric
Objects	$c = g_1 + \dots + g_n \text{ s.t.}$ $g_1 \cdots g_m \in [G, G]$	

$$cl(g_1 + \dots + g_m) = \min \{cl(t_1g_1t_1^{-1} \cdots t_mg_mt_m^{-1})\}$$

Invariants

$$scl(g_1 + \dots + g_m) \coloneqq \lim_{\{n \to \infty\}} cl(g_1^n + \dots + g_m^n)/n$$

Example

$$G = F_2, g_1 = a, g_2 = b, g_3 = A B$$

$$c = g_1 + g_2 + g_3$$

$$cl(g_1 + g_2 + g_3) = 0$$

$$cl(g_1^3 + g_2^3 + g_3^3) = 1$$

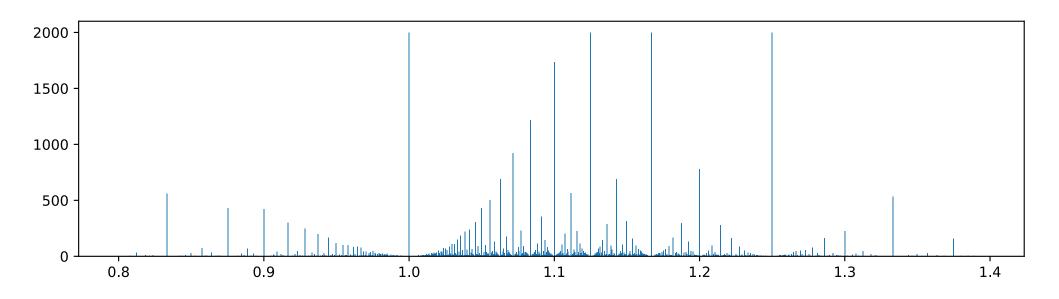
$$cl(g_1^n + g_2^n + g_3^n) = \lceil \frac{n-1}{2} \rceil$$

$$scl(g_1 + g_2 + g_3) = \frac{1}{2}$$

	Algebraic	Geometric
Objects	$c = g_1 + \dots + g_n$ s.t.	$\gamma_i: S^1 \to X \text{ for } 1 \leq i \leq m$
	$g_1 \cdots g_m \in [G,G]$	$\gamma_1 \cdots \gamma_m \in [\pi_1(X), \pi_1(X)]$
Invariants	$cl(g_1 + \dots + g_m) = \min \{cl(t_1g_1t_1^{-1} \cdots t_mg_mt_m^{-1})\}$	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$
	$scl(g_1 + \dots + g_m) \coloneqq \lim_{\{n \to \infty\}} cl(g_1^n + \dots + g_m^n)/n$	$scl(\gamma)$: = $inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$G = F_2, g_1 = a, g_2 = b, g_3 = A B$ $c = g_1 + g_2 + g_3$ $cl(g_1 + g_2 + g_3) = 0$ $cl(g_1^3 + g_2^3 + g_3^3) = 1$	
	$cl(g_1^n + g_2^n + g_3^n) = \lceil \frac{n-1}{2} \rceil$ $scl(g_1 + g_2 + g_3) = \frac{1}{2}$	

	Algebraic	Geometric
Objects	$c = g_1 + \dots + g_n \text{ s.t.}$ $g_1 \dots g_m \in [G, G]$	$\gamma_i: S^1 \to X \text{ for } 1 \le i \le m$ $\gamma_1 \cdots \gamma_m \in [\pi_1(X), \pi_1(X)]$
Invariants	$cl(g_{1} + \dots + g_{m}) = \min \{cl(t_{1}g_{1}t_{1}^{-1} \cdots t_{m}g_{m}t_{m}^{-1})$ $scl(g_{1} + \dots + g_{m}) \coloneqq \lim_{\{n \to \infty\}} cl(g_{1}^{n} + \dots + g_{m}^{n})/n$	$\Phi: \Sigma \to X$, were Φ on $\partial \Sigma$ restricts to γ with degree $n(\Phi)$
	$\{n \to \infty\}$	$scl(\gamma) := inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$G = F_2, g_1 = a, g_2 = b, g_3 = A B$ $c = g_1 + g_2 + g_3$ $cl(g_1 + g_2 + g_3) = 0$ $cl(g_1^3 + g_2^3 + g_3^3) = 1$	$X = \Sigma = \prod_{\substack{\gamma \\ \varphi = id}} \gamma = \partial \Sigma$ $\Phi = id : \Sigma \to X$
	$cl(g_1^n + g_2^n + g_3^n) = \lceil \frac{n-1}{2} \rceil$ $scl(g_1 + g_2 + g_3) = \frac{1}{2}$	$scl(\gamma) \leq -\frac{-1}{2} = \frac{1}{2}$

SCL on Free Groups



What's known:

- There is a fast (polynomial time) algorithm to compute scl on single elements and chains (Calegari)
- SCL is rational (Calegari)
- There is a gap of 1/2 for single elements and 1/8 (sharp?) for chains. (Duncan— Howie and Tao)

Open Questions:

- What's the exact gap for chains?
- Is there a second gap for single elements?
- Are all rationals greater than 1 realized as scl?
- Explain the distribution.
- Quasimorphisms?