RAAGs and SCL

Nicolaus Heuer, University of Cambridge joint with
Lvzhou (Joe) Chen, UT Austin

Algebra, Geometry and Topology seminar
'at' Heriot-Watt
November 3 ${ }^{\text {rd }}, 2020$

Stable Commutator Length

elements chains

Objects	$\gamma: S^{1} \rightarrow X$	$\gamma_{\mathrm{i}}: S^{1} \rightarrow X$ for $1 \leq i \leq m$
	$\gamma \in\left[\pi_{1}(X), \pi_{1}(X)\right]$	$\gamma_{1} \cdots \gamma_{m} \in\left[\pi_{1}(X), \pi_{1}(X)\right]$

scl

Example

Stable Commutator Length

elements
chains

Objects	$\gamma: S^{1} \rightarrow X$	$\gamma_{\mathrm{i}}: S^{1} \rightarrow X$ for $1 \leq i \leq m$
	$\gamma \in\left[\pi_{1}(X), \pi_{1}(X)\right]$	$\gamma_{1} \cdots \gamma_{m} \in\left[\pi_{1}(X), \pi_{1}(X)\right]$
	$\Phi: \Sigma \rightarrow X$, were Φ on $\partial \Sigma$ restricts to γ with degree	$\Phi: \Sigma \rightarrow X$, were
scl	$\mathrm{n}(\Phi)$	Φ on $\partial \Sigma$ restricts to γ with
degree $\mathrm{n}(\Phi)$		
	$\operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$	
		$\operatorname{scl}\left(\gamma_{1}+\cdots+\gamma_{n}\right):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$

Example

Stable Commutator Length

elements
chains

Objects	$\begin{gathered} \gamma: S^{1} \rightarrow X \\ \gamma \in\left[\pi_{1}(X), \pi_{1}(X)\right] \end{gathered}$	$\begin{gathered} \gamma_{\mathrm{i}}: S^{1} \rightarrow X \text { for } 1 \leq i \leq m \\ \gamma_{1} \cdots \gamma_{m} \in\left[\pi_{1}(X), \pi_{1}(X)\right] \end{gathered}$
scl	$\Phi: \Sigma \rightarrow X$, were Φ on $\partial \Sigma$ restricts to γ with degree $\mathrm{n}(\Phi)$	$\Phi: \Sigma \rightarrow X$, were Φ on $\partial \Sigma$ restricts to γ with degree $\mathrm{n}(\Phi)$
	$\operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$	$\operatorname{scl}\left(\gamma_{1}+\cdots+\gamma_{n}\right):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}$
Example	$X=\Sigma_{1,1}=\quad \gamma=\partial \Sigma_{1,1}$	$X=\Sigma=$
	$\Phi=i d: \Sigma_{1,1} \rightarrow \mathrm{X}$	$\Phi=i d: \Sigma \rightarrow \mathrm{X}$
	$\operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)} \leq-\frac{-1}{2}=\frac{1}{2}$	$\operatorname{scl}(\gamma) \leq-\frac{-1}{2}=\frac{1}{2}$

Basic Properties

- Monotone: If $\Phi: G \rightarrow H$ is homomorphism then $\operatorname{scl}_{G}(g) \geq \operatorname{scl}_{H}(\Phi(g))$. Same for chains.
- Preserved under automorphisms.
- Preserved under conjugation.
- Invariant under retractions.
- Relationship between chains and elements: if $\mathrm{g}, \mathrm{h} \in G$:

$$
\operatorname{scl}(g+h)=\operatorname{scl}\left(g t h t^{-1}\right)+\frac{1}{2}
$$

in $G \star\langle t\rangle$.

- 'Linear Norm': $\operatorname{scl}\left(g^{n}\right)=n \cdot \operatorname{scl}(g), \operatorname{scl}\left(c_{1}+c_{2}\right) \leq \operatorname{scl}\left(c_{1}\right)+\operatorname{scl}\left(c_{2}\right)$.

RAAGs

Γ : a graph with vertices V and edge set E.

$$
A(\Gamma)=\langle v \in V|[v, w], \text { for every }(v, w) \in E\rangle
$$

RAAGs
 and Graph Groups

Γ : a graph with vertices V and edge set E. +groups $\left\{G_{v}\right\}, \forall v \in V$

$$
\begin{gathered}
\mathrm{A}(\Gamma)=\langle v \in V|[v, w], \text { for every }(v, w) \in E\rangle \\
\left.\mathrm{G}(\Gamma)=\left\langle g_{v} \in G_{v}\right|\left[g_{v}, g_{w}\right], \text { for every }(v, w) \in E\right\rangle
\end{gathered}
$$

$$
\begin{array}{ll}
A(\ldots)=? & A(\square)=? \\
A(\boxtimes)=? & A(\square)=? \\
A(\square)=? &
\end{array}
$$

RAAGs
 and Graph Groups

Γ : a graph with vertices V and edge set E. +groups $\left\{G_{v}\right\}, \forall v \in V$

$$
\begin{gathered}
\mathrm{A}(\Gamma)=\langle v \in V|[v, w], \text { for every }(v, w) \in E\rangle \\
\left.\mathrm{G}(\Gamma)=\left\langle g_{v} \in G_{v}\right|\left[g_{v}, g_{w}\right], \text { for every }(v, w) \in E\right\rangle
\end{gathered}
$$

$$
\mathrm{A}(\ldots)=F_{4}
$$

$$
A(\square)=?
$$

$$
\mathrm{A}(\boxtimes)=Z_{4}
$$

$$
A(\Delta)=?
$$

$$
\mathrm{A}(\square)=F_{2} \times F_{2}
$$

SCL on Free Groups

Histogram of scl for $50^{\prime} 000$ random words in F_{2} of length 24.

	Free Group	RAAGs
Gaps g : element c : chain	$\operatorname{scl}(g) \geq \frac{1}{2}$ (Duncan-Howie '91) $\operatorname{scl}(c) \geq \frac{1}{8}$ (Tao '16) sharp?	$\operatorname{scl}(g) \geq \frac{1}{2}\left(\mathrm{H} . .^{\prime} 18\right) \quad g \in A(\Gamma)$
Spectrum	- Second gap? - Every rational ≥ 1 ?	?
Distribution	?	?
Complexity	scl: Computable in polynomial time (Calegari) cl: is NP complete. (H. '20)	$\begin{gathered} ? \\ \mathrm{cl}: ~ N P ~ H a r d ~ \end{gathered}$

	Free Group	RAAGs
Gaps g : element c : chain	$\operatorname{scl}(g) \geq \frac{1}{2}$ (Duncan-Howie '91) $\operatorname{scl}(c) \geq \frac{1}{8}$ (Tao '16) sharp?	$\begin{gathered} \operatorname{scl}(g) \geq \frac{1}{2}\left(\mathrm{H} .{ }^{\prime} 18\right) \quad g \in A(\Gamma) \\ \operatorname{scl}(c) \geq \frac{1}{24 \Delta(\Gamma)+12} \end{gathered}$ And $\exists d$, chain such that $\operatorname{scl}(d) \leq \frac{1}{\Delta(\Gamma)^{\prime}}$
Spectrum	- Second gap? - Every rational ≥ 1 ?	Every rational ≥ 1 is scl of some RAAG chain. (with Quasimorphisms!)
Distribution	?	Related to 'Fractional Stability Number'
Complexity	scl: Computable in polynomial time (Calegari) cl: is NP complete. (H. '20)	scl: NP Hard cl: NP Hard

Upshot: SCL vs FSN

SCL Gaps

Known results:

- Free groups (Duncan-Howie, Tao)
- Amalgamated free products and graph of groups. (Chen - H.)
- Hyperbolic Groups (Fujiwara - Calegari)
- Mapping Class Groups (Bestvina - Bromberg - Fujiwara)
- BS groups and certain amalgamated free products (Clay- Louwsma - Forester)

Chains: Warmup

$$
G=F_{2} \times F_{2}=\langle a, b\rangle \times\langle c, d\rangle
$$

- $\operatorname{scl}(a+b+A B)=\operatorname{scl}(b+a+A B)$

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,

Chains: Warmup

$$
G=F_{2} \times F_{2}=\langle a, b\rangle \times\langle c, d\rangle
$$

- $\operatorname{scl}(a+b+A B)=\operatorname{scl}(b+a+A B)$
- $\operatorname{scl}(a+A)=\operatorname{scl}(e)=0$

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,
- Adding $g+g^{-1}$,

Chains: Warmup

$$
G=F_{2} \times F_{2}=\langle a, b\rangle \times\langle c, d\rangle
$$

- $\operatorname{scl}(a+b+A B)=\operatorname{scl}(b+a+A B)$
- $\operatorname{scl}(a+A)=\operatorname{scl}(e)=0$
- $\operatorname{scl}(a+a b A+A B)=\operatorname{scl}(a+b+A B)$

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,
- Adding $g+g^{-1}$,
- Conjugating terms,

Chains: Warmup

$$
G=F_{2} \times F_{2}=\langle a, b\rangle \times\langle c, d\rangle
$$

- $\operatorname{scl}(a+b+A B)=\operatorname{scl}(b+a+A B)$
- $\operatorname{scl}(a+A)=\operatorname{scl}(e)=0$
- $\operatorname{scl}(a+a b A+A B)=\operatorname{scl}(a+b+A B)$
- $\operatorname{scl}\left(a^{2}+A-A\right)=\operatorname{scl}(a+a+A+A)=0$

Chains c, c' can have the same scl for 'trivial' reasons:

- Reordering terms,
- Adding $g+g^{-1}$,
- Conjugating terms,
- Replacing a term g^{m} by $m \cdot g$, and

Chains: Warmup

$$
G=F_{2} \times F_{2}=\langle a, b\rangle \times\langle c, d\rangle
$$

- $\operatorname{scl}(a+b+A B)=\operatorname{scl}(b+a+A B)$
- $\operatorname{scl}(a+A)=\operatorname{scl}(e)=0$
- $\operatorname{scl}(a+a b A+A B)=\operatorname{scl}(a+b+A B)$
- $\operatorname{scl}\left(a^{2}+A-A\right)=\operatorname{scl}(a+a+A+A)=0$
- $\operatorname{scl}(a+c+A C)=\operatorname{scl}(a+c+A+C)=0$

Chains c, c^{\prime} can have the same $s c l$ for 'trivial' reasons:

- Reordering terms,
- Adding $g+g^{-1}$,
- Conjugating terms,
- Replacing a term g^{m} by $m \cdot g$, and
- Replacing $g \cdot h$ by $g+h$, if g and h commute.

Definition: c and c^{\prime} are equivalent if the same up to the above manipulations.

Graph Products: Warmup

Definition: A chain in a graph product is a vertex chain if all its terms are supported on the vertex groups.

Definition: The opposite path of length $\boldsymbol{m}, \boldsymbol{\Delta}_{\boldsymbol{m}}$ is the graph on vertices $\{0, \ldots, m\}$ with edges whenever $|i-j| \geq 2$.

Graph Products: Warmup

Definition: A chain in a graph product is a vertex chain if all its terms are supported on the vertex groups.

Definition: The opposite path of length m, Δ_{m} is the graph on vertices $\{0, \ldots, m\}$ with edges whenever $|i-j| \geq 2$.

For a graph Г,

$$
\Delta(\Gamma)=\max \left\{m \mid \Delta_{m} \text { is a full subgraph of } \Gamma\right\}
$$

denotes the opposite path length of Γ. In particular, $\Delta\left(\Delta_{m}\right)=m$.

Main Result

Theorem (Chen - H. '20)
Let Γ be a graph and $G(\Gamma)$ be a graph product and let c be a chain on $G(\Gamma)$.

- If $\operatorname{scl}(c) \leq \frac{1}{12 \Delta(\Gamma)+24^{\prime}}$, then c is equivalent to a vertex chain.

Main Result

Theorem (Chen - H. '20)
Let Γ be a graph and $G(\Gamma)$ be a graph product and let c be a chain on $G(\Gamma)$.

- If $\operatorname{scl}(c) \leq \frac{1}{12 \Delta(\Gamma)+24^{\prime}}$, then c is equivalent to a vertex chain.
- There is a chain d in $G(\Gamma)$ which is not equivalent to a vertex chain with $\operatorname{scl}(d) \leq \frac{1}{\Delta(\Gamma)}$.

Main Result

Theorem (Chen - H. '20)
Let Γ be a graph and $G(\Gamma)$ be a graph product and let c be a chain on $G(\Gamma)$.

- If $\operatorname{scl}(c) \leq \frac{1}{12 \Delta(\Gamma)+24^{\prime}}$, then c is equivalent to a vertex chain.
- There is a chain d in $G(\Gamma)$ which is not equivalent to a vertex chain with $\operatorname{scl}(d) \leq \frac{1}{\Delta(\Gamma)}$.
- There is an algorithm to compute scl on vertex chains.

Overview of Proof of the Gaps Result

1. Gap for amalgamated free products $\mathrm{G}=A{ }^{\star}{ }_{C} B$.

- No long overlaps:

Let $c=g+h$ be a chain such that there is no N such that g^{N} subword of h^{∞} : Gap of $\frac{1}{12 N}$.

- Def: $H<G$ is :
- Malnormal: if for all $\forall g \in G \backslash H, h \in H:, \quad g h g^{-1} \notin H$.
- Central: $\forall g \in G \backslash H, H \in H: \quad g h g^{-1}=h$.
- CM subgroup: $\forall g \in G, \exists g^{\prime} \in H g H$: for all $h \in H$: either $g^{\prime} h g^{\prime-1}=h$, or $g^{\prime} h g^{\prime-1} \notin H$.
'Theorem': If $C<G$ is a $C M$ subgroup + centralizer (of centralizer)^^ N is $C M$ subgroup. Then G has no long overlaps of length N.

2. Gaps for Graph Groups. Write $G(\Gamma)=G(s t(v)) \star_{L k(v)} G(\Gamma \backslash v)$.

Chains with small scl

Let d_{0}, \ldots, d_{m} be the generators of Δ_{m}.
Define $g_{i, j}=d_{i} \cdots d_{j}$. Then
Claim:
$g_{0, m}^{m}=g_{0, m-1}^{m} c$, and
$g_{1, m}^{m}=g_{1, m-1}^{m} c$.

Thus: $d=g_{0, m}-g_{0, m-1}-g_{1, m}+g_{1, m-1}$

```
scl(m}\cdotd)=\operatorname{scl}(\mp@subsup{g}{0,m}{m}-\mp@subsup{g}{0,m-1}{m}-\mp@subsup{g}{1,m}{m}+\mp@subsup{g}{1,m-1}{m}
scl}(m\cdotd)=\operatorname{scl}(\mp@subsup{g}{0,m}{m}-\mp@subsup{g}{0,m-1}{m}+c-\mp@subsup{g}{1,m}{m}+\mp@subsup{g}{1,m-1}{m}-c
scl(m\cdotd) \leq scl( (gom
scl}(m\cdotd)\leq
```

$$
\operatorname{scl}(d) \leq \frac{1}{m}
$$

SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c=\sum_{v} g_{v}$ where $G_{v}=F\left(a_{v}, b_{v}\right)$ and $g_{v}=\left[a_{v}, b_{v}\right]^{2}$, i.e. $\operatorname{scl}\left(g_{v}\right)=1$. What is $\operatorname{scl}(c)$? Call it $s(\Gamma)$.

SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c=\sum_{v} g_{v}$ where $G_{v}=F\left(a_{v}, b_{v}\right)$ and $g_{v}=$ $\left[a_{v}, b_{v}\right]^{2}$, i.e. $\operatorname{scl}\left(g_{v}\right)=1$. What is $\operatorname{scl}(c)$? Call it $s(\Gamma)$.

Examples:

Γ	$s(\Gamma)$
Complete graph?	1
Graph on n vertices without edges?	n
\square	$?$
\square	$?$

Special Case: \square

Lower bound:

Special Case: \square

Lower bound:

Generally: $S \subset \Gamma$ is called stable, if no vertices in S are connected. Call $\mathrm{sn}(\Gamma)$ the largest size of a maximal set (also: independence number, stability number).

$$
\begin{aligned}
& s(\Gamma) \geq \operatorname{sn}(Г) \\
& s(\square) \geq 3
\end{aligned}
$$

Special Case: \square

Upper bound:

Special Case: \square

Upper bound:

Generally: A clique cover of Γ is a decomposition of Γ into cliques. A clique cover number $\operatorname{ccn}(\Gamma)$ is the smallest number of cliques need to cover Γ.

$$
\begin{aligned}
\operatorname{ccn}(\Gamma) & \geq s(\Gamma) . \\
3 & \geq s(\square)
\end{aligned}
$$

SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c=\sum_{v} g_{v}$ where $G_{v}=F\left(a_{v}, b_{v}\right)$ and $g_{v}=$ $\left[a_{v}, b_{v}\right]^{2}$, i.e. $\operatorname{scl}\left(g_{v}\right)=1$. What is $\operatorname{scl}(c)$? Call it $s(\Gamma)$.

Examples:

Γ	$s(\Gamma)$
Complete graph?	1
Graph on n vertices without edges?	n
\square	3
\square	$?$

Special Case:

$$
\begin{gathered}
\operatorname{ccn}(\Gamma) \geq s(\Gamma) \geq \operatorname{sn}(\Gamma) . \\
3 \geq s(\square) \geq 2
\end{gathered}
$$

Special Case:

$$
\begin{gathered}
\operatorname{ccn}(\Gamma) \geq s(\Gamma) \geq \operatorname{sn}(\Gamma) \\
3 \geq s(\square) \geq 2
\end{gathered}
$$

Definition: A fractional stable set of Γ is a collection $\left\{s_{v}\right\}$ of non-negative real numbers for every $v \in V$, such that for every clique $C \subset \Gamma: \sum_{v \in C} s_{v} \leq 1$.

$$
f s n(\Gamma)=\max \sum s_{v}
$$

where maximum is taken over every fractional stable set.

$$
s(\Gamma) \geq f \operatorname{sn}(\Gamma)
$$

Special Case:

$$
\begin{gathered}
\operatorname{ccn}(\Gamma) \geq s(\Gamma) \geq \operatorname{sn}(\Gamma) \\
3 \geq s(\square) \geq 2
\end{gathered}
$$

Definition: A fractional clique cover of Γ is a collection $\left\{s_{c}\right\}$ of non-negative real numbers for every clique c of Γ, such that for every vertex $v \in V: \sum_{v \in C} s_{C} \geq 1$.

$$
f c c(\Gamma)=\min \sum s_{C}
$$

where minimum is taken over all fractional clique numbers.

$$
f c c(\Gamma) \geq s(\Gamma)
$$

SCL on vertex chains

Question: Let $G(\Gamma)$ be a graph product and let c be a chain $c=\sum_{v} g_{v}$ where $G_{v}=F\left(a_{v}, b_{v}\right)$ and $g_{v}=$ $\left[a_{v}, b_{v}\right]^{2}$, i.e. $\operatorname{scl}\left(g_{v}\right)=1$. What is $\operatorname{scl}(c)$? Call it $s(\Gamma)$.

Examples:

Γ	$s(\Gamma)$
Complete graph?	1
Graph on n vertices without edges?	n
\square	3
\square	2.5

Fractional Stability Number

Theorem (Chen - H. '20): For every graph $\Gamma, f \operatorname{sn}(\Gamma)=s(\Gamma)=f c c(\Gamma)$.

Fractional Stability Number

Theorem (Chen -H. '20): For every graph $\Gamma, f \operatorname{ss}(\Gamma)=s(\Gamma)=f c c(\Gamma)$.

We have:

- $f \operatorname{sn}(K(n, m))=n / m$, where $K(n, m)$ is the opposite Kneser graph, thus every rational ≥ 1.
- $f s n$ is NP hard (Subhash Khot)
- Relationship to (the better studied) Fractional Chromatic Number.

Modelling SCL and FSN

Modelling SCL and FSN

FSN of random graphs on 25 vertices vs. X

X vs SCL and FSN

1. Choose with some probability an integer n
2. Choose a binomal random variable around a fixed mean μ

X vs SCL and FSN

1. Choose with some probability an integer n
2. Choose a binomal random variable around a fixed mean μ

Choose $X\left(d, \beta, \mu, c_{1}, c_{2}\right)$ as follows:

1. Choose an integer n with probability proportional to $n^{\left(1-n^{\beta}\right) \cdot d}$
2. Let N_{n} be the random variable with distribution $N\left(\mu, c_{1} \cdot n^{c_{2}}\right)$ and round to nearest element in $\frac{1}{n} Z$

Question/Conjecture: Is there a natural distribution which models both SCL and FSN?

Open Questions

1. Is scl computable (and rational) on RAAGs?
2. What is the distribution of scl?
3. Is there a scl gap for special groups?

End

Quasimorphisms

Definition: A map $\phi: G \rightarrow R$ is a homomorphism if
for all $g, h \in G$:

$$
|\phi(g)+\phi(h)-\phi(g h)|=0
$$

Quasimorphisms

Definition: A map $\phi: G \rightarrow R$ is a quasimorphism if there is a $C>0$, s.t. for all $g, h \in G$:

$$
|\phi(g)+\phi(h)-\phi(g h)| \leq C
$$

Quasimorphisms!

Definition: A map $\phi: G \rightarrow R$ is a quasimorphism if there is a $C>0$, s.t. for all $g, h \in G$:

$$
|\phi(g)+\phi(h)-\phi(g h)| \leq C
$$

- $D(\phi)$: 'defect': smallest such C.
- ϕ is homogeneous, if $\phi\left(g^{n}\right)=n \cdot \phi(g)$

Quasimorphisms!

Definition: A map $\phi: G \rightarrow R$ is a quasimorphism if there is a $C>0$, s.t. for all $g, h \in G$:

$$
|\phi(g)+\phi(h)-\phi(g h)| \leq C
$$

- $D(\phi)$: 'defect': smallest such C.
- ϕ is homogeneous, if $\phi\left(g^{n}\right)=n \cdot \phi(g)$

Theorem (Bavard, Calegari): For every $g \in[G, G]$ (c, chain):

$$
\operatorname{scl}(g)=\sup _{\phi} \frac{\phi(g)}{2 D(\phi)}
$$

where the supremum is taken over all homogeneous quasimorphisms.

FSN and quasimorphisms

- Given: $c=\sum_{v} c_{v}$, such that $\operatorname{scl}\left(c_{v}\right)=1$.
- Let $\phi_{v}: G_{v} \rightarrow R$ be a collection of extremal quasimorphisms to c_{v} for every $v \in V$.
- $\left\{s_{v}\right\}_{v}$ be the maximal fractional stable set. Then:

$$
\phi(g)=\sum s_{v} \cdot \phi_{v}(g)
$$

is an extremal quasimorphism for c , for g cyclically reduced.

End

Stable Commutator Length

Algebraic

Geometric
Objects $g \in[G, G]$

$$
c l(g):=\min \left\{n \mid g=\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right\}
$$

Invariants

$$
\operatorname{scl}(g):=\lim _{\{n \rightarrow \infty} \operatorname{cl}\left(g^{n}\right) / n
$$

Example

Stable Commutator Length

Algebraic

Geometric
Objects

$$
g \in[G, G]
$$

$$
c l(g):=\min \left\{n \mid g=\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right\}
$$

Invariants

$$
\operatorname{scl}(g):=\lim _{\{n \rightarrow \infty\}} \operatorname{cl}\left(g^{n}\right) / n
$$

$$
G=F_{2}, g=[a, b]
$$

Example

$$
\begin{gathered}
c l([a, b])=1 \\
c l\left([a, b]^{3}\right)=2 \\
\operatorname{cl}\left([a, b]^{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil \\
\operatorname{scl}([a, b])=\frac{1}{2}
\end{gathered}
$$

Stable Commutator Length

Algebraic
Geometric
Objects

$$
\begin{array}{lc}
g \in[G, G] & \gamma: S^{1} \rightarrow X \\
& \gamma \in\left[\pi_{1}(X), \pi_{1}(X)\right]
\end{array}
$$

$\Phi: \Sigma \rightarrow X$, were Φ on $\partial \Sigma$ restricts to

$$
c l(g):=\min \left\{n \mid g=\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right\}
$$

$$
\operatorname{scl}(g):=\lim _{\{n \rightarrow \infty} \operatorname{cl}\left(g^{n}\right) / n
$$

$$
G=F_{2}, g=[a, b]
$$

Example

$$
\begin{gathered}
c l([a, b])=1 \\
c l\left([a, b]^{3}\right)=2 \\
c l\left([a, b]^{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil \\
\operatorname{scl}([a, b])=\frac{1}{2}
\end{gathered}
$$

Stable Commutator Length

Algebraic
Geometric
Objects

$$
\begin{array}{lc}
g \in[G, G] & \gamma: S^{1} \rightarrow X \\
& \gamma \in\left[\pi_{1}(X), \pi_{1}(X)\right]
\end{array}
$$

$\Phi: \Sigma \rightarrow X$, were Φ on $\partial \Sigma$ restricts to

$$
c l(g):=\min \left\{n \mid g=\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right\}
$$

$$
\gamma \text { with degree } \mathrm{n}(\Phi)
$$

Invariants

$$
\operatorname{scl}(g):=\lim _{\{n \rightarrow \infty\}} \operatorname{cl}\left(g^{n}\right) / n
$$

$$
\operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}
$$

$$
\begin{array}{cc}
G=F_{2}, g=[a, b] & X=\Sigma_{1,1}= \\
\operatorname{cl}([a, b])=1 & \\
c l\left([a, b]^{3}\right)=2 & \Phi=i d: \Sigma_{1,1} \rightarrow X \\
\operatorname{cl}\left([a, b]^{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil & \operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)} \leq-\frac{-1}{2}=\frac{1}{2}
\end{array}
$$

Example

Stable Commutator Length for chains

Algebraic
Geometric
Objects

$$
\begin{gathered}
c=g_{1}+\cdots+g_{n} \text { s.t. } \\
g_{1} \cdots g_{m} \in[G, G]
\end{gathered}
$$

$$
c l\left(g_{1}+\cdots+g_{m}\right)=\min \left\{c l\left(t_{1} g_{1} t_{1}^{-1} \cdots t_{m} g_{m} t_{m}^{-1}\right)\right.
$$

Invariants

$$
\operatorname{scl}\left(g_{1}+\cdots+g_{m}\right):=\lim _{\{n \rightarrow \infty\}} \operatorname{cl}\left(g_{1}^{n}+\cdots+g_{m}^{n}\right) / n
$$

Example

Stable Commutator Length for chains

Algebraic
Geometric
Objects

$$
\begin{gathered}
c=g_{1}+\cdots+g_{n} \text { s.t. } \\
g_{1} \cdots g_{m} \in[G, G]
\end{gathered}
$$

$$
c l\left(g_{1}+\cdots+g_{m}\right)=\min \left\{c l\left(t_{1} g_{1} t_{1}^{-1} \cdots t_{m} g_{m} t_{m}^{-1}\right)\right.
$$

Invariants

$$
\operatorname{scl}\left(g_{1}+\cdots+g_{m}\right):=\lim _{\{n \rightarrow \infty\}} \operatorname{cl}\left(g_{1}^{n}+\cdots+g_{m}^{n}\right) / n
$$

$$
\begin{gathered}
G=F_{2}, g_{1}=a, g_{2}=b, g_{3}=A B \\
c=g_{1}+g_{2}+g_{3} \\
\operatorname{cl}\left(g_{1}+g_{2}+g_{3}\right)=0 \\
\operatorname{cl}\left(g_{1}^{3}+g_{2}^{3}+g_{3}^{3}\right)=1 \\
\operatorname{cl}\left(g_{1}^{n}+g_{2}^{n}+g_{3}^{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil \\
\operatorname{scl}\left(g_{1}+g_{2}+g_{3}\right)=\frac{1}{2}
\end{gathered}
$$

Example

Stable Commutator Length for chains

Algebraic

Geometric
Objects

$$
\begin{array}{cc}
c=g_{1}+\cdots+g_{n} \text { s.t. } & \gamma_{\mathrm{i}}: S^{1} \rightarrow X \text { for } 1 \leq i \leq m \\
g_{1} \cdots g_{m} \in[G, G] & \gamma_{1} \cdots \gamma_{m} \in\left[\pi_{1}(X), \pi_{1}(X)\right] \\
& \Phi l\left(g_{1}+\cdots+X, g_{m}\right)=\min \left\{c l\left(t_{1} g_{1} t_{1}^{-1} \cdots t_{m} g_{m} t_{m}^{-1}\right)\right.
\end{array} \quad \Phi \text { on } \partial \Sigma \text { restricts to } \gamma \text { with }
$$

Invariants

$$
\operatorname{scl}\left(g_{1}+\cdots+g_{m}\right):=\lim _{\{n \rightarrow \infty} \operatorname{cl}\left(g_{1}^{n}+\cdots+g_{m}^{n}\right) / n
$$

$$
\operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}
$$

$$
\begin{gathered}
G=F_{2}, g_{1}=a, g_{2}=b, g_{3}=A B \\
c=g_{1}+g_{2}+g_{3} \\
c l\left(g_{1}+g_{2}+g_{3}\right)=0 \\
\operatorname{cl}\left(g_{1}^{3}+g_{2}^{3}+g_{3}^{3}\right)=1 \\
\operatorname{cl}\left(g_{1}^{n}+g_{2}^{n}+g_{3}^{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil \\
\operatorname{scl}\left(g_{1}+g_{2}+g_{3}\right)=\frac{1}{2}
\end{gathered}
$$

Example

Stable Commutator Length for chains

Algebraic

Geometric
Objects

$$
\begin{gathered}
c=g_{1}+\cdots+g_{n} \text { s.t. } \\
g_{1} \cdots g_{m} \in[G, G] \\
c l\left(g_{1}+\cdots+g_{m}\right)=\min \left\{c l\left(t_{1} g_{1} t_{1}^{-1} \cdots t_{m} g_{m} t_{m}^{-1}\right)\right.
\end{gathered}
$$

$$
\gamma_{\mathrm{i}}: S^{1} \rightarrow X \text { for } 1 \leq i \leq m
$$

$$
\gamma_{1} \cdots \gamma_{m} \in\left[\pi_{1}(X), \pi_{1}(X)\right]
$$

$$
\Phi: \Sigma \rightarrow X, \text { were }
$$

Φ on $\partial \Sigma$ restricts to γ with
Invariants

$$
\operatorname{scl}\left(g_{1}+\cdots+g_{m}\right):=\lim _{\{n \rightarrow \infty\}} \operatorname{cl}\left(g_{1}^{n}+\cdots+g_{m}^{n}\right) / n
$$

$$
\operatorname{scl}(\gamma):=\inf \frac{-\chi(\Sigma)}{2 n(\Phi)}
$$

Example

$$
\begin{array}{cc}
G=F_{2}, g_{1}=a, g_{2}=b, g_{3}=A B & X=\Sigma= \\
c=g_{1}+g_{2}+g_{3} & \gamma=\partial \Sigma \\
c l\left(g_{1}+g_{2}+g_{3}\right)=0 & \Phi=i d: \Sigma \rightarrow \mathrm{X} \\
c l\left(g_{1}^{3}+g_{2}^{3}+g_{3}^{3}\right)=1 & \operatorname{scl}(\gamma) \leq-\frac{-1}{2}=\frac{1}{2} \\
\operatorname{cl}\left(g_{1}^{n}+g_{2}^{n}+g_{3}^{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil &
\end{array}
$$

SCL on Free Groups

What's known:

- There is a fast (polynomial time) algorithm to compute scl on single elements and chains (Calegari)
- SCL is rational (Calegari)
- There is a gap of $1 / 2$ for single elements and 1/8 (sharp?) for chains. (DuncanHowie and Tao)

Open Questions:

- What's the exact gap for chains?
- Is there a second gap for single elements?
- Are all rationals greater than 1 realized as scl?
- Explain the distribution.
- Quasimorphisms?

