Shapes, Software, Symmetries

Queens' Maths Society
 $13^{\text {th }}$ November, 2019
 Nicolaus Heuer

Little Bio

- 2010-2015: BSc, MSc, ETH Zurich
- 2015-2019: Dphil (PhD), Oxford
- 2019-now: Herchel Smith Fellow and PDRA at Queens', Cambridge.

Motivating Question

Motivating Question

Can I tell two shapes apart?

Motivating Question

Can I tell two shapes apart?

Answer: No! If the shapes have dimensions 4 or more.

Outline:

- Geometric Group Theory

Outline:

- Geometric Group Theory
- Explain the Title:
- Shapes
- Software
- Symmetries

Outline:

- Geometric Group Theory
- Explain the Title:
- Shapes: Manifolds
- Software: Turing Machines
- Symmetries: Groups

Outline:

- Geometric Group Theory
- Explain the Title:
- Shapes: Manifolds
- Software: Turing Machines
- Symmetries: Groups
- From Software to Symmetries
- From Symmetries to Shapes

Geometry

Group Theory

Computer Science

Geometry

Pythagoras of
Samos
(c. $570-\mathrm{c} .495 \mathrm{BC}$)

Computer Science

Alan Turing
(1912-1957)

$$
\begin{aligned}
& a x^{2}+b x+c=0 \quad h(i, x)= \begin{cases}1 & \text { if program i halts on input } \mathrm{x} \\
0 & \text { else. }\end{cases} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
x^{5}-4 x+2=0
$$

Geometry

Group Theory

Mikhail Gromov
(born 1943)

Geometry

Group Theory

- length
- volume
- Abelian
- Nilpotent
- Cyclic subgrouops
- Hyperbolic groups
- curvature
- growth

Computer Science

- Decision Problems
- Computational Complexity

Geometric Group Theory

Shapes
 (Manifolds)

A surface is an object which locally looks like a disk:

Shapes
 (Manifolds)

A surface is an object which locally looks like a disk:

It is possible to list all surfaces:

Shapes (Manifolds)

A surface is an object which locally looks like a disk:

It is possible to list all surfaces:
Theorem: If X is a closed (compact+no-boundary) surface then X is equivalent to one of the following families of surfaces

- The sphere
- $\mathrm{S}(\mathrm{g})$, the surface with g handles
- $\mathrm{P}(\mathrm{g})$, a Klein bottle with g handles.

Shapes (Manifolds)

A surface is an object which locally looks like a disk:

It is p ssible to list all surfaces:
Theorem: If X is a closed (compact+no-boundary) surface then X is equivalent to one of the following families of surfaces

- The sphere
- $S(g)$, the surface with g handles
- $P(g)$, a Klein bottle with g handles.

Shapes
 (Manifolds)

Equivalent surfaces:

Shapes
 (Manifolds)

For which n can I make a list (without repetitions) of all n-manifolds?

Shapes (Manifolds)

Examples:

- 2-dimensional manifolds: possible to classify
- 3-dimensional manifolds: possible to classify
- 4-dimensional manifolds: impossible to classify
- 5-dimensional manifolds: impossible to classify

Uses lots of group theory!!

Shapes (Manifolds)

Examples:

- 2-dimensional manifolds: possible to classify
- 3-dimensional manifolds: possible to classify
- 4-dimensional manifolds: impossible to classify
- 5-dimensional manifolds: impossible to classify

Uses lots of group theory!!

We will explain this today!

Software (Turing Machines)

What does a computer do?

Software (Turing Machines)

What does a computer do?

Software (Turing Machines)

What does a computer do?

Computation:

- Has infinite memory
- Finite set of rules to manipulate entries in memory

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them. A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$

How to compute things:

- Write input on the tape, set pointer to the start and state to i
- Manipulate entries according to rules.
- Finish: once the state reaches f . Then the output is on the tape.

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them. A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$

Input: 01100010110

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them.
A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$

Input: 01100010110

| b | b | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | b | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
r(i, 0)=\left(q _1,1, L\right)
$$

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them.
A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$
$\begin{array}{lllllllllllllll}\mathrm{b} & \mathrm{b} & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}\end{array}$

State = q_1

$$
r(i, 0)=\left(q _1,1, L\right)
$$

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them. A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$
$\begin{array}{lllllllllllllll}\mathrm{b} & \mathrm{b} & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}\end{array}$

State = q_1

$$
r\left(q _1,0\right)=\left(q _2,0, L\right)
$$

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them. A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$
$\begin{array}{lllllllllllllll}\mathrm{b} & \mathrm{b} & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}\end{array}$

State = q_2

$$
r\left(q _1,0\right)=\left(q _2,0, L\right)
$$

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them. A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$
$\begin{array}{lllllllllllllll}\mathrm{b} & \mathrm{b} & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}\end{array}$

State = q_2

$$
r\left(q _2,1\right)=(f, 1, R)
$$

Software (Turing Machines)

Formally:

- Memory: Infinite tape with a start point and a finite set with symbols from a finite set $A(e . g . A=\{0,1, b\})$ on them. A is the tape alphabet.
- Working-Memory: A finite set Q of states. With one initial state i and one final state f.
- A pointer to the tape
- A set of rules $r: Q \times A \rightarrow Q \times A \times\{L, R\}$
$\begin{array}{lllllllllllllll}\mathrm{b} & \mathrm{b} & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}\end{array}$

Software (Turing Machines)

Does a given Turing machine has to complete its computation ('Halt')?
\rightarrow Clearly No!

Can we decide if a Turing machine halts?
Is there a Turing machine h with input all Turing Machines and all inputs, such that:
$h(i, x)= \begin{cases}1 & \text { if program i halts on input } \mathrm{x} \\ 0 & \text { else } .\end{cases}$

Software (Turing Machines)

Does a given Turing machine has to complete its computation ('Halt')?
\rightarrow Clearly No!

Can we decide if a Turing machine halts?
Is there a Turing machine h with input all Turing Machines and all inputs, such that:
$h: N \times N \rightarrow\{0,1\}$
Assume that all Turing Machines and Inputs are encoded in N (natural numbers).
$h(i, x)= \begin{cases}1 & \text { if program i halts on input } \mathrm{x} \\ 0 & \text { else } .\end{cases}$

Software (Turing Machines)

$h(i, x)= \begin{cases}1 & \text { if program i halts on input } \mathrm{x} \\ 0 & \text { else } .\end{cases}$
Define: $\mathrm{g}: \mathrm{N} \rightarrow\{0,1\}$ via:

$$
g(i)= \begin{cases}0 & \text { if } h(i, i)=0 \\ \text { loop forever } & \text { else }\end{cases}
$$

If g is the $\mathrm{n}^{\text {th }}$ Turing machine then

Software (Turing Machines)

$h(i, x)= \begin{cases}1 & \text { if program i halts on input } \mathrm{x} \\ 0 & \text { else } .\end{cases}$
Define: $\mathrm{g}: \mathrm{N} \rightarrow\{0,1\}$ via:

$$
g(i)= \begin{cases}0 & \text { if } h(i, i)=0 \\ \text { loop forever } & \text { else }\end{cases}
$$

If g is the $\mathrm{n}^{\text {th }}$ Turing machine then

- If $g(n)$ halts, then $h(n, n)=0$, hence $g(n)$ does not halt
- If $\mathrm{g}(\mathrm{n})$ does not halt, then $\mathrm{h}(\mathrm{n}, \mathrm{n})=1$, hence $\mathrm{g}(\mathrm{n})$ does halt.

Software (Turing Machines)

Theorem (Turing): There is no Turing Machine which decides if a Turing Machine with a given input halts or not.

Symmetries (Groups)

ISOM(
) =
 \{e, r1, r2, s1, s2, s3\}
 = D6

Symmetries (Groups)

ISOM(
) =
 \{e, r1, r2, s1, s2, s3\}
 = D6

How can we store this information?

- Write out the Cayley Table (not so efficient)

Symmetries
 (Groups)

ISOM() = \{e, r1, r2, s1, s2, s3\} = D6

How can we store this information?

- Write out the Cayley Table (not so efficient)
- Or: Just record the most essential equations ('relations'):
$D_{6} \cong\left\langle r, s \mid r^{3}=1, s^{2}=1, s r s^{-1}=r^{-1}\right\rangle$

Symmetries (Groups)

Generally: S a finite set, R a set of relations in S , then set:

$$
G \cong\langle S \mid R\rangle:=F(S) /\langle\langle R\rangle\rangle
$$

G is finitely presented if S and R are finite.

Symmetries (Groups)

Generally: S a finite set, R a set of relations in S , then set:

$$
G \cong\langle S \mid R\rangle:=F(S) /\langle\langle R\rangle\rangle
$$

G is finitely presented if S and R are finite.

What can we know about the group from a given group presentation?

From Software to Symmetries

Question: Can we decide if an element in a finitely presented group is trivial?

From Software to Symmetries

Question: Can we decide if an element in a finitely presented group is trivial?

Because we can use groups to simulate Turing Machines

From Software to Symmetries

(sketch in semi-groups)

Let T be a Turing machine with

- Tape Alphabet A
- States Q

From Software to Symmetries

(sketch in semi-groups)

Let T be a Turing machine with

- Tape Alphabet A
- States Q

Define a finitely preseted (semi) group via

$$
G \cong\left\langle A \cup Q \mid R_{T}\right\rangle
$$

From Software to Symmetries
 (sketch in semi-groups)

Input: 01100010110

$$
\begin{array}{lllllllllllllll}
\mathrm{b} & \mathrm{~b} & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}
\end{array}
$$

State $=\mathrm{i}$

$$
r(i, 0)=\left(q _1,1, L\right)
$$

Word in G:

$$
0110 \text { P i } 010110
$$

From Software to Symmetries
 (sketch in semi-groups)

Input: 01100010110

$$
\begin{array}{lllllllllllllll}
\mathrm{b} & \mathrm{~b} & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \mathrm{~b} & \mathrm{~b}
\end{array}
$$

State $=\mathrm{i}$

Word in G:

$$
r(i, 0)=\left(q _1,1, L\right)
$$

Relation:
$0 \mathrm{Pi} 0=\mathrm{Pq}$ _1 01

$$
0110 \text { Piolollo }
$$

From Software to Symmetries (sketch in semi-groups)

b	b	0	1	1	0	1	0	1	0	1	1	0	b	b

State = q_1

Word in G:
r(q_1,0) = (q_1,1,L)

Relation:

$$
0 \mathrm{Pi} 0=\mathrm{Pq} \mathrm{_} 101
$$

$$
\begin{array}{r}
0110 \text { Piolllllo } \\
= \\
011 \text { Pq_101101110 }
\end{array}
$$

From Software to Symmetries

Theorem: It is undecidable if an element in a finitely presented group represents the identity or not.

From Symmetries to Shapes

From Symmetries to Shapes

(and the other way around!)

From Symmetries to Shapes

Fundamental group:
Let X be a shape (a topological space) with a point x.
$p(X)$ the fundamental group of X is:

- Set of all loops based at x
- We can combine two loops g, h in $p(X)$ by applying them after each other

From Symmetries to Shapes

Fundamental group:
Let X be a shape (a topological space) with a point x.
$p(X)$ the fundamental group of X is:

- Set of all loops based at X
- We can combine two loops g, h in $p(X)$ by applying them after each other
- Equivalent if loops can be stretched into each other.

Group?

- Identity?
- Associativity?
- Inverse?

From Symmetries to Shapes

Fundamental group:
Let X be a shape (a topological space) with a point x.
$p(X)$ the fundamental group of X is:

- Set of all loops based at X
- We can combine two loops g, h in $p(X)$ by applying them after each other
- Equivalent if loops can be stretched into each other

Group?

- Identity? Loop which remains at x
- Associativity? Clear!
- Inverse? Same loop in opposite orientation

From Symmetries to Shapes

From Symmetries to Shapes

$$
\begin{aligned}
& \mathrm{p}(\mathrm{)}=\mathrm{z} \cong\langle a \mid\rangle \\
& \mathrm{p}(\Omega)=\mathrm{z} \times \mathrm{z} \cong\langle a, b \mid a b=b a\rangle \\
& \mathrm{p}(\bigcirc)=\{\mathrm{e}\}
\end{aligned}
$$

$p(M)$, M manifold = finitely presented group

From Symmetries to Shapes

$$
\begin{aligned}
& \mathrm{p}(\bigcirc)=\mathrm{z} \cong\langle a \mid\rangle \\
& \mathrm{p}(\square)=\mathrm{z} \times \mathrm{z} \cong\langle a, b \mid a b=b a\rangle \\
& \mathrm{p}(\bigcirc)=\{\mathrm{e}\}
\end{aligned}
$$

$p(M)$, M manifold = finitely presented group

Manifolds \longrightarrow Groups

From Symmetries to Shapes

Theorem: Let G be a finitely presented group and let $\mathrm{n}>3$. Then there is a compact n -manifold M , which can be effectively computed, such that $p(M)=G$.

Putting Things Together

- If I could decide invariants in 4-manifolds I can decide invariants in finitely presented groups
- If I can decide invariants in finitely presented groups I can decide halting for turing machines.

Question?

